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But blessed is the man who 
trusts in the Lord, 

whose confidence is in him. 
He will be like a tree planted 

by the water 
that sends out its roots by 

the stream. 
It does not fear when heat 

comes; 
its leaves are always green. 

It has no worries in a year of 
drought 

and never fails to bear 
fruit. 

Jeremiah 17:7-8 
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CHAPTER 1. GENERAL INTRODUCTION 

General Overview 

A variety of metalloproteins act as redox enzymes and electron carriers in respiration 

and photosynthesis, metabolism of nonmetals, and other biological processes.1"5 Fundamental 

principles of biological reactivity can be understood only if interactions and reactions 

between proteins are understood on the molecular level. The biological redox-processes may 

require several steps including protein recognition and binding, protein rearrangement, and 

chemical transformations. A theoretical basis for what physical factors control the rate of 

long-range electron transfer is well known, so the kinetics of electron-transfer reactions can 

be used as a tool to explore dynamic processes that control overall biological reactions.4,6 

We use kinetics of photoinduced redox reactions to study protein-protein recognition 

and configurational interconversion of a diprotein complex that may control the electron-

transfer process. In this work we explore the interaction between the physiological partners 

cytochrome/and cytochrome from C. reinhardtii. 

Cytochrome /"interchangeably reacts with cytochrome C(, and plastocyanin, two 

proteins that have different structures and redox centers, but similar physico-chemical 

properties. Because cytochrome C(, and plastocyanin must recognize the same physiological 

partners, these two proteins are expected to have similar surface patterns.7 But the question 

remains, how do aforementioned differences and similarities reflect on protein docking and 

dynamics of the diprotein complex. Extensive data on the reaction between cytochrome/and 

plastocyanin already exist, which allowed us a comparison of cytochrome and 

plastocyanin in their corresponding reactions with their common partner.7,8 
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To learn about protein-protein recognition and dynamics of electron transfer between 

proteins, we used various experimental techniques such as laser flash photolysis, chemical 

cross-linking, and optical spectroscopy. Since both cytochrome/and cytochrome c& are c-

type cytochromes, their chromophores overlap and it is spectroscopically difficult to study 

any simultaneous change of their redox states. We surmount this difficulty by replacing the 

iron ion in cytochrome C(, with zinc(II). The photoexcitation of zinc cytochrome produces 

a long-lived triplet state that is a strong reducing agent. Direct photooxidation obviates the 

need for an external reducing agent, which makes interpretation of kinetics data more 

straightforward. Moreover, in the fast photoinduced reactions, the dynamic processes of 

interest that are often masked in the slow thermal reactions become detectable. We study the 

effects of ionic strength, solution viscosity, and temperature on the electron-transfer reaction 

between cytochrome/and cytochrome ce-

Dissertation Organization 

Chapter 2 explores the effects of ionic strength, solution viscosity, and chemical 

cross-linking on the protein-protein recognition and reaction between cytochrome/and 

cytochrome c6- Chapter 3 is a comprehensive study of the temperature and solution viscosity 

effects on the mechanism of the electron-transfer reaction between cytochrome/and 

cytochrome c&. In Chapter 4 we compare cytochrome ce and plastocyanin, with the emphasis 

on their reaction with cytochrome/ Recent theoretical studies emphasized the similarity 

between the docking configurations in cytochrome/cytochrome c6 and cytochrome 

/plastocyanin complexes.9 We derived from literature data and our own studies that the 
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energetics of configurational interconversion of the complex, rather than the initial 

configuration, will determine the mechanism of the electron-transfer reactions. 

Chapter 2 is a paper that has been published in a peer-refereed journal. Chapter 3 is a 

paper prepared for submission in a peer-refereed journal. Chapter 4 is a literature review 

complemented with and discussed in the context of results from chapters 2 and 3. Parts of 

Chapter 4 will be included in a future publication. The dissertation ends with Chapter 5, 

which gives the overall conclusions. 

References 

(1) Nocek, J. M.; Zhou, J. S.; Forest, S. D.; Priyadarshy, S.; Beratan, D. N.; Onuchic, J. N.; 

Hoffman, B. M. Chemical Reviews (Washington, D. C.) 1996, 96, 2459-2489. 

(2) Liang, Z.-X.; Kurnikov, I. V.; Nocek, J. M.; Mauk, A. G.; Beratan, D. N.; Hoffman, B. 

M. Journal of the American Chemical Society 2004, 126, 2785-2798. 

(3) Lasey, R. C.; Liu, L.; Zang, L.; Ogawa, M. Y. Biochemistry 2003, 42, 3904-3910. 

(4) Davidson, V. L. Accounts of Chemical Research 2000, 33, 87-93. 

(5) Crowley, P. B.; Ubbink, M. Accounts of Chemical Research 2003, 36, 723-730. 

(6) Pletneva, E. V.; Fulton, D. B.; Kohzuma, T.; Kostic, N. M. Journal of the American 

Chemical Society 2000, 122, 1034-1046. 

(7) Hervas, M.; Navarro, J. A.; De la Rosa, M. A. Accounts of Chemical Research 2003, 36, 

798-805. 

(8) Soriano, G. M.; Ponamarev, M. V.; Piskorowski, R. A.; Cramer, W. A. Biochemistry 

1998, 37, 15120-15128. 

(9) Gross, E. L.; Pearson, D. C., Jr. Biophys J2003, 85, 2055-2068. 
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CHAPTER 2. METALLOPROTEIN ASSOCIATION, SELF-ASSOCIATION, 

AND DYNAMICS GOVERNED BY HYDROPHOBIC INTERACTIONS. 

SIMULTANEOUS OCCURRENCE OF GATED AND TRUE ELECTRON-

TRANSFER REACTIONS BETWEEN CYTOCHROME F AND 

CYTOCHROME C6 FROM CHLAMYDOMONAS REINHARDTII 

A paper published by and reprinted with permission from 

Journal of the American Chemical Society 2003, 125, 10598-10607 

Copyright 2003 American Chemical Society 

Tijana Z. Grove and Nenad M. Kostic 

Department of Chemistry, Iowa State University, Ames, IA 50011, USA 

All experiments, fittings, and interpretation of results were done by the primary author. 

Abstract 

Noninvasive reconstitution of the heme in cytochrome eg with zinc(II) ions allowed 

us to study the photoinduced electron-transfer reaction 3Zncyt C(, + cyt/(III) —» Zncyt cC + 

cyt/(II) between physiological partners cytochrome cf) and cytochrome f both from 

Chlamydomonas reinhardtii. The reaction kinetics was analyzed in terms of protein docking 

and electron transfer. In contrast to various protein pairs studied before, both the 

unimolecular and the bimolecular mechanisms of this oxidative quenching takes place at all 

ionic strengths from 2.5 through 700 mM. The respective intracomplex rate constants are kimi 

(1.2 ± 0.1)xl04 s'1 for persistent, and kb\ (9 ± 4)xl02 s"1 for the transient protein complex. The 
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former reaction seems to be true electron transfer, and the latter seems to be electron transfer 

gated by a structural rearrangement. Remarkably, these reactions occur simultaneously, and 

both rate constants are invariant with ionic strength. The association constant Ka for zinc 

cytochrome ce and cytochrome/!!!) remains (5 ± 3)xl05 M"1 in the ionic strength range from 

700 mM to 10 mM, and than rises slightly, to (7 ± 2)xl06 M"1, as ionic strength is lowered to 

2.5 mM. Evidently, docking of these proteins from C. reinhardtii is due to strong 

hydrophobic interaction slightly augmented by weak electrostatic attraction. Kinetics, 

chromatography, and cross-linking consistently show that cytochrome/self-dimerizes at 

ionic strengths of 200 mM and higher. Cytochrome/(III) does, but its dimer does not, quench 

triplet state 3Zncyt Formation of this unreactive dimer is an important step in the 

mechanism of electron transfer. Not only association between the reacting proteins, but also 

their self-association, should be considered when analyzing reaction mechanisms. 

Introduction 

Because electron-transfer reactions between metalloproteins are essential to life it is 

important to understand their mechanisms. The overall redox process may consist of several 

steps, including protein-protein recognition, binding, and subsequent electron transfer. 1-3 

Electrostatic and hydrophobic interaction govern the affinity and specifity in recognition and 

association. 4 Electrostatic interactions are well documented,5-15 but mechanism and 

dynamics of electrostatic association are little understood. In simple cases there is only one 

energetically favorable binding configuration, which is also the reactive configuration. In 

more interesting cases an orientation that is optimal for binding is not optimal for electron 
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transfer or there are multiple binding conformations with similar energy, only some of which 

are competent for electron transfer. 16 

Very recent studies have shown that hydrophobic interaction can additionally 

stabilize the electrostatic complex. 417-22 Although hydrophobic interactions are expected to 

be prominent at physiological conditions (ionic strength of chloroplast interior is estimated at 

400 mM) evidence that redox metalloproteins associate solely by hydrophobic interaction is 

scarce. Here we study the unexplored electron-transfer reaction of cytochrome/and 

reconstituted cytochrome c6, and document the importance of hydrophobic forces not only 

for protein docking, but also for their reactivity. 

Cytochrome/is the lumen-exposed part of the cytochrome b(f complex. Its iron(III) 

form donates an electron to plastocyanin(II) (in plants and photosynthetic bacteria) or 

cytochrome ^(III) (in cyanobacteria and some eucariotic algae), the reduced form of which 

then reduces the cofactor P700+ of photosystem 1.5'6,23'24 

Some algae and cyanobacteria synthesize plastocyanin or cytochrome c&. Others 

produce either protein, depending on the (un)availability of copper ions in the growth 

medium. 25,26 The notion that plastocyanin replaced cytochrome ce in the higher plants and 

some algae has very recently been refuted when cytochrome c6 was found in a higher plant. 

27 Although plastocyanin and cytochrome ce are functionally equivalent electron carriers, 

their primary, secondary, and tertiary structures are completely different. These proteins, 

however, have similar distribution of acidic patches and hydrophobic surfaces.25 How these 

differences and similarities influence the mechanisms by which these proteins oxidize the 

same partner, cytochrome/(II), remains unknown. Electron-transfer reaction between 

cytochrome/and plastocyanin 5-7'14-17'24 28 [n vnr0 involves electrostatic attraction between 
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the positively charged patch of lysine residues in the former protein and the negatively 

charged patch of acidic residues in the latter.6-8'28'29 

Very little is known about the electron-transfer reaction between cytochrome /and 

cytochrome c&. Ours is the first study of protein-protein interactions that govern the kinetics 

of electron transfer between them. Because both of them are heme proteins, whose 

absorption spectra overlap, it is almost impossible to follow spectroscopically the 

simultaneous oxidation of one heme group and reduction of the other.30 In this study we 

overcame this difficulty by reconstituting cytochrome C(, with zinc(II) ions and making the 

electron-transfer step photoinduced. Similar reconstitution of other cytochromes of type c 

does not perturb their conformation and interaction with their redox partners. 3l,32Although 

the photoinduced electron-transfer step in eq 1, which is followed by the reaction in eq 2 is 

not biological, the very high rate of this step allowed us to observe and quantify the 

association of proteins from the same organism, a process of great importance. Because the 

excited-state reaction in eq 1 and the subsequent ground-state reaction in eq 2 do not require 

any redox agents other than the interacting proteins, their association is not perturbed. 

Monitoring the electron-transfer reaction in eq 1 is our means of studying structural and 

dynamic aspects of metalloprotein association. 

3Zncyt c6 + cyt/(III) > Zncyt c6
+ + cyt/(H) (1) 

Zncyt c'6+ + cyt/(II) > Zncyt c6 + cyt /(III) (2) 

The results of this study are interesting and surprising. Cytochrome/from 

Chlamydomonas reinhardtii strongly associates not only with its physiological partner 

cytochrome ce but also with itself. The "cross"-association is driven predominantly, and the 

self-association entirely, by hydrophobic interaction. Self-association has been recognized as 
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an important means of regulating enzymatic reactions.33-38 To our knowledge, this is the first 

report of self-association affecting the kinetics of electron-transfer reaction. 

Previous research in our and other laboratories showed that mobility within the 

diprotein complex is necessary for efficient electron transfer as in eq 1.39 Dynamics of 

electrostatic diprotein complexes has been studied in detail,2'9'39"47 but that of non-

electrostatic complexes has not, until now. 

Materials and Methods 

Chemicals and Buffers. Distilled water was demineralized to a resistivity greater 

than 17 MQ cm by a Barnstead Nanopure II apparatus. Chromatographic resins and gels 

were purchased from Sigma Chemical Co; hydrogen fluoride, from Matheson Gas Product 

Inc; nitrogen and ultrapure argon, from Air Products Co; BCA protein assay reagent kit, from 

Pierce Co; all other chemicals, from Fisher Chemical Co. All buffers were prepared from the 

solid salts NaHzPO^HiO and NaiHPO^F^O, and had pH of 7.0010.05. For kinetic 

measurements the ionic strengths higher than 10 mM were adjusted with solid NaCl and for 

chromatography buffers of particular concentration were made. Unless concentration is 

stated, the buffers are specified by their ionic strength. 

Proteins. Cytochrome/from C. reinhardtii, expressed from E. coli, was isolated and 

purified as described previously,48 and was kindly provided by Professor William A. 

Cramer. Cytochrome from C. reinhardtii was isolated and purified by the published 

method. 25 Iron was removed, and the free-base protein was reconstituted with zinc(II) ions, 

by a modification of the standard procedure (manuscript in preparation). Zinc cytochrome 

was always kept in the dark. Concentrations of the two proteins were determined from their 
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UV-vis spectra, on the basis of known absorptivities: cytochrome/(II), Ae552=26 mNT'cm"1, 

cytochrome ce(II), Ae552=20 mM"'cm"', and zinc cytochrome <%, AE42I=(2.3±0.1)X105 M"'cm" 

The last value was determined from absorption spectra and quantification of total protein 

using the BCA protein assay reagent kit. All proteins were stored in liquid nitrogen. Before 

each series of experiments the buffer in protein stock solutions was replaced by the working 

buffer using so-called ultrafree-4 centrifugal filter obtained from Millipore Co. 

Laser Flash Photolysis. Experiments were performed with the second harmonic (at 

532 nm) of a Q-switched Nd-YAG laser, the instrument was described elsewhere. 49 Argon 

was passed first through water and then through the buffer solution. The required volume of 

buffer was deaerated in a 10-mm cuvette for at least 30 minutes before zinc cytochrome c6 

was added. After each addition of cytochrome /(HI), the solution was gently deaerated for 10 

to 15 minutes. In the titration experiments concentration of zinc cytochrome ce was kept 

constant in the interval 0.70-3.0 gM, and concentration of cytochrome/(IH) was varied 

between 0.20 and 12 gM. Decay of the triplet state was monitored at 460 nm, where the 

transient absorbance reaches the maximum. The concentration of the triplet depended on the 

intensity of the laser pulse and was always much lower than the concentration of cytochrome 

XIII). Pseudo-first-order excess of cytochrome/!!!) was maintained in all experiments. 

Formation and disappearance of the cation radical were monitored at 675 nm, where the 

difference between the absorbances of this species and the triplet is greatest. To enhance 

signal-to-noise ratio, at least 100 shots were collected and averaged. 

Viscosity. The kinetic effects of viscosity were studied in the 10 mM sodium 

phosphate buffer at pH 7.0 and (20±1) °C. Glycerol was added incrementally to the solution 

containing 3.0 (iM zinc cytochrome C(, and 9.0 |_iM cytochrome /(HI), up to the concentration 

of 80 % w/v. The viscosity of the solution was determined from the tables. 50,51 
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Cross-linking of Cytochrome/ A solution containing 5.0 p.M cytochrome/and 50-

fold molar excess of l-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC) 

in sodium phosphate buffer at pH 7.0 and ionic strength 700 mM was stirred at room 

temperature. After 4 hours the reaction mixture was subjected to size-exclusion HPLC. 

HPLC Separations. Hewlett Packard 1100 HPLC system contained an autosampler 

and a multiwavelength detector set to 215, 280, and 410 nm. Absorption at 215 nm is 

common to all peptides and proteins; that at 280 nm is due to aromatic residues; and that at 

410 nm is diagnostic of heme. In the reverse-phase separations, an analytical Vydac C5 

column 214TP54 (sized 150 x 4.6 mm, beads of 5 jo,m) was used. The eluting solvent A was 

0.10% (v/v) trifluoroacidic acid in H%0, and solvent B was 0.08% (v/v) trifluoroacidic acid in 

acetonitrile. In a typical run, the percentage of solvent B in the eluent was kept at 0% for 5 

min after the injection of the sample, and then raised gradually to 45% over a 35-min period. 

The flow rate was 1.0 mL/min. 

The size-exclusion separations were made with a Superdex 75 HR 10/30 column, 

having optimal separation range from 3 to 70 D. The solvent was a 100 mM (concentration) 

phosphate buffer, and the flow rate was 0.50 mL/min. The size-exclusion column was 

calibrated with bovine serum albumine (67 D), ovalbumin (43 D), carbonic anhydrase (29 

D), trypsin inhibitor (20 D), and myoglobin (17 D). The void volume of the column was 

determined using blue dextran 2000. In size-exclusion separations the protein concentration 

was varied between 2.0x10"* and 2.0x10"5 M for cytochrome f and between l.OxlO'6 and 

5.0x10"5 M for cytochrome c&. 

Analytical Ultracentrifugation. Sedimentation equilibrium involved cytochrome 

c6(II) dissolved in phosphate buffer having pH 7.0 and ionic strength 300 mM at room 

temperature. The protein concentration was varied from 2.0xl0'6 to 8.0xl0"6 M. A Beckman 
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Optima XL-A analytical ultracentrifuge equipped with an An60-Ti rotor ran at 30 000 rpm. 

Absorbance detector was set at 410 or 550 nm, depending on protein concentration, so that 

absorbance stayed below 0.7. Data were collected at a spacing of l.OxlO"3 cm, with ten 

averages, in a step-scan mode every 3 hours. Equilibrium was reached when the absorbance 

stopped changing. The molecular mass of monomeric cytochrome was set to the value 

obtained from amino acid sequence, 9.8 D. 

Fittings of the Kinetic Data. The rate constants for the reaction in eq 1 were 

obtained from the analysis of the changes of absorbance at 460 and 675 nm with time. The 

former change corresponds to the decay of 3Zncyt eg and is a sum of several exponential 

terms (eq 3). The latter change is caused by both the triplet and the cation radical and is 

described by eqs 4-7.52 Contribution of the triplet to the absorbance change at 675 nm is 

given by eq 5, in which at is the instantaneous absorbance after the laser flash. The 

contribution of cation radical is fitted with eq 7. 

AA46o = a,- exp(-/c/0 + b (3) 
i 

AA.675 — AATRIPLET AAEAUON (4) 

AAtripiet = tir, f exp(-/f/f>] (5) 

fr= a-, /(«uni + tibi) Î = uni, bi (6) 

AAcation= Gf [exp(-^,//f) - exp(-&r,V)] (7) 

Kinetic results were analyzed with the SigmaPlot v.5.0, from SPSS Inc. The error 

margins for all rate constants (k) and amplitudes (a) obtained from the fitting of the transient-

absorbance changes include two standard deviations, i. e., correspond to the confidence limit 

of 95 %. In some plots error bars for some of the points are large, but fortunately these points 

are not crucial for the fitting and do not alter the results and their discussion. Dependence of 

the observed rate constant, k0bS, for the slower phase on the concentration of free cytochrome 
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/III) was fitted with the improved steady-state equation (eq 8),53 in tandem with eq 9, as in 

several previous studies from this laboratory. I2-20-43-54 

*on /cb, [cyt./(HI)] 
kobs = f8) 

^ofT+^i + ̂ n[cytXm)] 

[cyt_/(III)]=[cytyCIII)J - 0.5{[Zncyt c6]io,+[cyt /(III)]0+/^jJ"1- (9) 

(([Zncyt c6]10,+[cytXIII)]o+^"')2-4[Zncyt cv;]t.„[cyt /TIII J ' I 

Many attempts to obtain the association constant Ka from fitting experimental results 

to eq 8 with SigmaPlot software failed, because a global minimum and several local minima 

of the sum of squares occurred with similar probabilities. Each of these occurrences yielded a 

different set of fitting parameters kon and /c0ff, the ratio of which is Ka. Unfortunately, methods 

of numerical analysis often fail when data are fitted to an equation that contains a product of 

a very small and very large number. A common case in kinetics is a product between 

icentration and rate constant, such as &on[cyt/(III)] in eq 8. Rescaling equation parameters 

sometimes improves numerical behavior and produces reasonable fittings.The occurrence of 

the "multiple minima" is not yet adequately addressed in SigmaPlot, but we managed to 

avoid this problem. We designed our experiments so that complex kinetic equations, 

ambiguous fittings, and analysis of possibly unreliable fitting parameters became 

unnecessary. The rate constants kun\ and k\,\ were read directly from the plots in Figures 2 and 

3, and the association constant Ka was obtained from the fractional contributions (eq 6) of the 

persistent (auni) and the transient (<%) complex to the transient-absorbance change using eqs 

10 and 11, which are explained elsewhere.52,77 

/uni= r {[Zncyt c6] + [cyt/(III)]+l//Ç, -([Zncyt c6] + [cyt/(III)] + 1 /Ka)2 (10) 
2[Zncyt c6] 

-4[Zncyt^][cyt/(HI)])^} 
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Icytflimi _ [cy'/(IH)] , _1_ (U) 

f, ni g S*» 

Results 

Natural Decay of the Triplet State 3Zncyt C f , .  In the absence of a quencher, the 

natural decay of the triplet excited state of the porphyrin to its ground state is 

monoexponential (eq 12). The rate constant, /cnd, is 100+10 s"1 at room temperature in 

phosphate buffer having pH 7.00 and is independent of protein concentration in the interval 

from 1.0 to 10 |iM and of ionic strength in the interval from 2.5 to 700 mM. 

AA46o= and exp (- W) + b (12) 

Oxidative Quenching of the Triplet State 3Zncyt c6 by Cytochrome/(III) is 

Biphasic at All Ionic Strengths. In the presence of cytochrome/(III), decay of the triplet is 

accelerated and is best described by a biexponential function (eq 13 and Figure la) at all 

tested ionic strengths, from 2.5 through 700 mM. The rate constant kunh for the faster of the 

two phases, is independent of concentration of cytochrome/(III) and ionic strength, as Figure 

2 shows. The rate constant k0bS, for the slower phase, levels off at relatively high cytochrome 

/(III) concentrations. As ionic strength is raised, the approximate breaking point in the plots 

shifts towards higher ratios of the protein concentrations cyt/(III)/Zncyt c&, that is, to a 

higher concentration of the cytochrome/(III); see Figure 3. The rate constants for the faster 

(A:uni) and slower (&bi) phase of the quenching reactions are listed in Table 1. The rate 

constants for the 

AA460= a\ exp (- £unit) + a2 exp (-/cblt) + b (13) 

appearance and disappearance of the cation radical, shown in Figure lb, are independent of 

the cytochrome/(III) concentration. The absorbance at 675 nm grows at the rate of 
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(5.6±0.6)xl04 s"1 and declines at the rate of (1.3±0. l)x 104 s"1. This latter rate constant is the 

same as the kum. The increase in the absorbance at 675 nm is due to the back reaction (eq 2), 

and its decrease is due to the forward reaction (eq 1).20,51 This study concerns the forward 

reaction because this reaction gives the information about protein association. 

Kinetic Effects of Viscosity. The reaction in eq 1 was studied at ionic strength of 10 

mM and temperature 20±1 °C. The decay of 3Zncyt c6 remains biphasic throughout the 

viscosity range studied, from 1.005 through 60.1 cp. The amplitudes of both phases are 

unaffected by viscosity, as Figure 4 shows. Figure 5 shows that the rate constant for 

unimolecular quenching, kuni, does not depend on viscosity, but the rate constant for the 

bimolecular quenching, kbi, does. 

Evidence that Cytochrome is Monomeric. In analytical centrifugation 

experiments, as the concentration of the protein is raised, the observed molecular mass stays 

constant and equal to that 

calculated from amino-acid sequence, as Figure S4 shows. In size-exclusion HPLC 

experiments, the elution time of 26 min corresponds to the molecular mass of the monomer; 

see Figure S5. 

Evidence for the Dimerization of Cytochrome f Size-exclusion HPLC of 

cytochrome f solutions at ionic strengths 200 mM and higher shows an unsymmetric signal 

that is broadened on the side of shorter elution times. Repeated chromatography of the main 

fraction, having elution time of 21 min, and of the shoulder preceding it yielded the same 

chromatogram: the main band at 21 min and a broad shoulder at shorter times, as shown in 

Figure 6a. The UV-vis spectra of the main and shoulder fractions are identical to each other 

and to the spectrum of cytochrome/prior to the separation. The main fraction and the 

shoulder fraction separated by size gave the same reverse-phase chromatograms, shown in 
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Figure 6b, consisting of one single, sharp, symmetrical signal. Cross-linking of Cytochrome/ 

Cross-linking of cytochrome/with the carbodiimide EDC yielded only two products, which 

eluted from the size-exclusion HPLC column in 18 and 21 min. The ratio of their molecular 

masses is 1.8, as Figure 7 shows. Evidently, the first and the second fraction, respectively, 

are dimer and monomer of cytochrome/ 

Attempt at Oxidative Quenching of 3Zncyt c6 with Dimer of Cytochrome/(III). 

Attempts to oxidatively quench 3Zncyt c6 with the product of cross-linking gave kinetic 

traces that were well fitted with the monoexponential function in eq 12. The rate constant 

obtained from these fittings is 111+1 s"1, same as that for natural decay of the triplet state. 

Residuals of the fitting are presented in Figure S3 in the Supporting Information. 

Discussion 

Interactions Between Metalloproteins. Our research group extensively studied the 

mechanism of electron-transfer reaction and dynamic aspects of docking between zinc 

cytochrome c and plastocyanin. 12-13-20'39-44'51'52-56"58 jn this and similar systems,59"63 where 

proteins have high association constants, the kinetics is biphasic at low ionic strength. At 

intermediate and high ionic strength, kinetics is monophasic, and the observed rate constant 

is directly proportional to the concentration of the reactant in excess. When the association 

constant for a metalloprotein pair is low even at low ionic strength, the observed rate constant 

linearly depends on concentration. 6'1415-16-26'28'64-71 jn SOme cases kinetics of interprotein 

reaction may be monophasic throughout, because so called saturation occurs under different 

reaction conditions. 
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In various protein pairs the rate constant for electron transfer and the association 

constant markedly decrease as ionic strength is raised because electrostatic attraction 

dominates protein-protein association. Hydrophobic interaction unaccompanied by 

electrostatic attraction, a phenomenon well-documented in enzyme-substrate binding, 34,72"74 

has only begun to be noticed in association of redox proteins. I9,21'22,26 Cytochrome f and 

plastocyanin from Phormidium laminosum reportedly are held mostly by hydrophobic forces. 

4,75 

Cytochrome / and Cytochrome c6. The water-soluble part of cytochrome /'from C. 

reinhardtii is an elongated, (3-barell protein, the iron(III) form of which has a net charge of-

2 at pH of 7.0 (assuming normal pKa values). Because the crystal structure of the membrane-

bound cytochrome b(f complex is unknown, nearly all kinetic studies in vitro have been done 

with the truncated form of cytochrome/.'23 A cationic patch of lysine residues has been 

implicated in docking with plastocyanin.6'7,14'28 The biological function of the hydrophobic 

outer face of the heme-binding pocket in cytochrome/, however, has barely been studied. 17 

We are interested in this hydrophobic area because both acidic substituents (so-called 

propionate chains) and one of the vinyl substituents of the heme are accessible in this part of 

the protein surface, as shown in Figure 8 a. 

Cytochrome c6(II) from C. reinhardtii has net charge -7 at pH 7.0 (assuming normal 

pKa values). As Figure 8a shows, the heme is largely buried in the protein; only one 

carboxylic group and a porphyrin edge are exposed. The surface around these exposed parts 

is largely nonpolar, except for Lys29, Lys57, and Asp41 residues.25 Anionic groups are 

mostly located on the opposite side from the exposed parts of the heme.76 

On the basis of the NMR spectroscopic experiments it was vaguely suggested that 

electron-transfer reactions involving cytochrome/, cytochrome c6, and plastocyanin may 
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occur by different mechanisms, depending on the organism to which these proteins belong.21 

We test this proposition by studying the reactions between homologous proteins, those 

belonging to the same organism. 

Mechanism of 3Zncyt Quenching by Cytochrome/. The excited state of zinc 

porphyrin, 3Zncyt c6, produced by a laser flash, is oxidatively quenched by cytochrome /(III) 

according to eq 1. The resulting cation radical, Zncyt c^, returns to the initial ground state in 

a thermal back reaction shown in eq 2. This study deals with the photoinduced reaction in eq 

1, Unexpectedly, this reaction is biphasic at all ionic strengths examined, not only at low 

ionic strength, as was the case in numerous studies cited above. (See Scheme 1.) The 

intramolecular rate constant, kunl, for the faster phase does not depend on the cytochrome 

/(III) concentration and ionic strength. Its values, given in Table 1, are read directly from the 

horizontal plots in Figure 2. The relative amplitude of this phase (/uni) increases with the 

concentration of the persistent complex as the cytochrome/(III) concentration is raised, as 

shown in Figure S1. This rate constant corresponds to the intracomplex reaction within the 

persistent diprotein complex Zncyt c '6/cyt/(III), which already exists in solution before the 

laser flash. The observed rate constant for the slower phase, /c0bS, does depend on cytochrome 

/(III) concentration. Because this phase is the bimolecular reaction between free proteins that 

associate in a transient Zncyt Cô/cyt/(III) complex, the plateau in Figure 3 corresponds to the 

maximal value of k0bs, achieved when zinc cytochrome c& is completely associated with 

cytochrome/(III). Therefore, the intracomplex rate constant /tbi, for the transient diprotein 

complex, can be read from the leveled plot. Despite the large error bars for some of the 

points in Figure 3, the values are sufficiently precise for our discussion; these results also 

are given in Table 1. Direct detection of the cation radical Zncyt ce+ at both low and high 

ionic strength is evidence that quenching occurs by oxidation of the triplet state. 
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Association Between Cytochrome/and Cytochrome c6 from C. reinhardtii is Due 

Mostly to Hydrophobic Interaction. The persistence of the two kinetic phases of the 

reaction in eq 1 at ionic strength as high as 700 mM is evidence that electrostatic attraction 

plays a small, if any, role in association of these two proteins. We determined the association 

constants directly form the amplitudes of the two phases shown in Figures 2 and 3, using eqs 

10 and 11.52,77 (Fitting of the amplitudes is shown in Figures SI and S2 in Supporting 

Information.) In this treatment only the total concentration of cytochrome /(III) matters, and 

its state (free or bound) does not matter. These two straightforward methods are independent 

of the mechanism of the subsequent electron transfer. Indeed, as Table 1 shows, fittings to 

eqs 10 and 11 gave consistent results. Invariance of kun„ and Ka with ionic strength 

consistently shows that the interaction between cytochrome ce and cytochrome/is not 

electrostatic. Indeed, hydrophobic interaction is fully consistent with Figure 8b, which shows 

hydrophobic surfaces surrounding the exposed parts of the heme in both proteins. Further 

speculation about structural and other detailes of this complex is unwarranted. As Table 1 

shows, the association constant Ka decreases a little when ionic strength is raised from 2.5 to 

10 mM and stays almost unchanged at higher ionic strengths. This initial drop is a sign of 

weak electrostatic attraction, which augments the strong hydrophobic effect insensitive to 

ionic strength. This weak electrostatic interaction cannot be atributed to the net charges of 

cytochrome Cô(II) and cytochrome/(III), which are -7 and -2 at pH 7.0, respectively; local 

charges are relevant here. Indeed, Ullmann et al. identified a minor anionic (acidic) patch in 

cytochrome ce that may interact with the predominant cationic (basic) patch of lysine 

residues in cytochrome/;55 these patches are shown in Figure 8c. This pair of redox 

metalloproteins is remarkable because association is dominated by hydrophobic interactions 

and only weakly enhanced by electrostatic interactions. 
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Multiple Configurations of Diprotein Complexes in General. Much evidence 

shows that the same pair of redox proteins may form multiple complexes, but little 

experimental evidence shows that these complexes may undergo essentially the same 

intracomplex electron-transfer reaction at different rates. This last notion is plausible and has 

been accepted even though experimental studies corroborating it are still few. Three recent 

studies have uniformly dealt with photoinduced reactions in which the triplet excited state of 

zinc cytochrome c is oxidatively quenched by heme proteins or a metal complex. Two 

simultaneous first-order reactions are detected in each case, but more than two complexes 

may perhaps be present. 45'46-51'78"83 The variety of kinetic results in these three studies shows 

the diversity of dynamic properties of fairly similar donor-acceptor systems, all of which are 

mostly held by electrostatic forces. No two of these systems show the same effects and 

noneffects of ionic strength and viscosity on the intracomplex rate constant. Clearly, general 

rules about the dynamic aspects of electron-transfer reactions within protein complexes still 

elude us. 

Multiple Configurations of Diprotein Complexes of Zinc Cytochrome c6 and 

Cytochrome/. By monitoring the decay of the triplet state 3Zncyt ce we detected the 

persistent complex in Scheme 1, determined its association constant Ka, and precisely 

determined its rate constant &unj,. We also detect the transient complex, and determine its rate 

constant, kb\, reliably but less precisely because kinetic traces due to the cation radical Zncyt 

C6+ are relatively noisy. Fortunately, both rate constants are known with precision that is 

sufficient for the discussion that follows. 

I. Kinetic Noneffects of Ionic Strength - Evidence for Hydrophobic Interaction. 

Table 1 shows that the intracomplex rate constants for the persistent (kuni) and transient (/cb0 

complexes in Scheme 1 differ as much as twentyfold and that both values are invariant with 
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ionic strength over a wide range. This invariance shows, for the first time, that hydrophobic, 

and not only electrostatic, interaction between metalloproteins can give rise to structurally 

heterogeneous association, which in turn gives rise to multiphasic reactivity. 

II. Kinetic Noneffects and Effects of Viscosity - Evidence for Simultaneous 

Occurrence of True and Gated Electron Transfer. In previous studies in our laboratory, 

changing solution viscosity was used to determine whether the electron-transfer reaction is 

gated. 12-13'39'44'52 An increase in viscosity slows down protein motion and rearrangement of the 

diprotein complex, but does not affect association constant and the rate constants of the so-

called true and coupled electron-transfer reactions.52 

Glycerol is noninvasive to proteins and even stabilizes them. Because hydrophobic 

interactions are essential for protein folding, and glycerol does not unfold proteins, this 

solvent evidently does not perturb hydrophobic interaction. Indeed, relative amplitudes of the 

persistent and transient complex are unaffected by glycerol; see Figure 4. Therefore, the 

association constant Ka must also be unaffected. 

Independence of the rate constant kun\ of solution viscosity, shown in Figure 5a, is 

evidence for true electron transfer within the persistent diprotein complex. Large and smooth 

dependence of the rate constant &bi on solution viscosity, shown in Figure 5b, is diagnostic of 

gated electron transfer within the transient (collisional) diprotein complex. Electron transfer 

is the rate-limiting step in the unimolecular reaction because the persistent complex either is 

static or rearranges at a rate much higher than 1.2 x 104 s"', but the transient complex 

rearranges at a rate of (9 ± 4) x 102 s~' (the average of the four values of /cbj in Table 1). 

Because this latter process is slower than the (unobservable) electron-transfer step within this 

complex, we detected this structural process when we monitored electron transfer that is 

controlled by it. 
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Self-association of Cytochrome/ Figure 3 shows that as the ionic strength is 

raised, a greater excess of cytochrome/!!!) over zinc cytochrome c6 is needed to reach a 

plateau in k0bs. The cyt/7II)/Zncyt C(, ratio at the onset of the plateau increases from 1.2 

to ca. 2.7. Not all of cytochrome/(III) put in solution seems available for association (and 

subsequent reaction) with cytochrome c&. The asymmetric chromatogram of cytochrome/ 

in Figure 6a shows a main signal and a prominent shoulder on the side corresponding to a 

larger molecular mass. Repeated experiments with separate samples taken from the main 

fraction and from the incompletely-resolved fraction preceding it consistently yielded this 

same pattern, shown in Figure 6a. The width of the shoulder precluded accurate 

determination of the elution time of the aggregate and of its molecular mass, but we 

estimated its mass to be approximately twice the nominal value. Cytochrome/ and also 

each of its two incompletely separated fractions in Figure 6a, all consistently gave the 

same narrow and rather symmetric chromatogram in Figure 6b. 

The size-exclusion pattern in Figure 6a is characteristic of self-association 

equilibrium that is fast on the chromatography time scale of minutes.84 The reverse-phase 

pattern in Figure 6b, however, proves that both fractions in Figure 6a contain the same 

protein - cytochrome/ If those fractions had contained different proteins of similar 

molecular masses, these proteins would have eluted separately. This did not happen. Instead, 

when all noncovalent interactions between the cytochrome/molecules were disrupted by 

denaturation, in the reverse phase experiment, the sample became homogeneous in terms of 

polarity. 

Covalent cross-linking followed by size-exclusion chromatography is the standard 

method for detecting protein association.85 An existing oligomer is captured by specific 

cross-linking, and a distinct signal appears in the chromatogram.33,85,86 Random cross-
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linking gives a multitude of chromatographic features, which may be smeared.85 As Figure 7 

shows, cytochrome/gave one distinct new fraction, whose molecular mass is approximately 

twice that of the protein (monomer). Although EDC was present in large excess over the 

protein, higher oligomers were absent. Evidently, cross-linking captures a dimer that already 

exists in solution. Because at the ionic strength of 700 mM all electrostatic interactions are 

absent, we conclude that the protein dimer is held by hydrophobic forces. 

Kinetic Consequences of Cytochrome/Dimerization. As Figure 9 shows, 

monomerric cytochrome/(III) does, but the cross-linked dimer of cytochrome/(III) does not, 

quench the triplet state 3Zncyt c&. The observed rate constant in the latter case is that for the 

natural decay of the triplet. Because the cytochrome / dimer is formed owing to hydrophobic 

interactions (and is only reinforced by cross-linking), the protein molecules likely cover each 

other's nonpolar surfaces (Figure 8b), and the heme edge is no longer accessible to zinc 

cytochrome c6. 

Attempts to fit the results in Figure 3 to Scheme 1 with an improved steady-state 

approximation (eq 8) failed. This fitting method, which had succeeded in treatments of other 

diprotein complexes that associate and react by parallel unimolecular and bimolecular 

mechanism, 12'13'51'56,61 is jnaplicable to cytochrome c6 and cytochrome f. The mechanism 

involving only association between the reactants (i.e., Scheme 1 alone) proved to be 

inadequate. 

When our size-exclusion and reverse-phase HPLC separations and cross-linking 

experiments (discussed above) clearly showed that cytochrome/forms a homodimer in 

solution, we had to add the 

2 cyt/(III) * > cyt/(III)/cyt/(III) (14) 
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equilibrium in eq 14 to Scheme 1. The fittings now become very good to excellent, as Figure 

3 shows. The most surprising feature in Figure 3, namely the shifting of the "plateau point" 

to the increasing values of the [cyt/(III)]/[Zncyt c&] ratio, was faithfully reproduced. This 

ratio is greater than unity not because larger hetero-oligomers of zinc cytochrome ct and 

cytochrome/(III) form but because a redox-inactive homodimer of cytochrome /(III) forms. 

As the concentration of this protein is raised, it increasingly associates not only with zinc 

cytochrome c&, but also with itself, thus inhibiting the reaction in Scheme 1. 

We can only conjecture about the significance in vivo of this process, which we 

documented in vitro. Dimerization of cytochrome/in the crystal has recently been 

considered. 23 The dimerization of cytochrome/from C. reinhardtii in aqueous solution is 

interesting because cytochrome b(f is a dimer, but of unknown structure. 6,87-93 We detected 

dimerization at ionic strengths of both 300 and 700 mM, conditions relevant to the ionic 

strength in vivo, which is 300 mM. 24 We do not know of any other reports that kinetics of 

interprotein electron-transfer reaction is modulated by protein self-association and intend to 

study this mechanistic phenomenon and its possible biological ramifications. 

Comparison of Cytochrome c& and Plastocyanin from C. reinhardtii in their 

Association and Electron Transfer with Cytochrome/from C. reinhardtii. 

Chlamydomonas reinhardtii is the first organism known to biosynthesize both plastocyanin 

(when copper ions are available) and cytochrome c6 (when they are unavailable) and to use 

either of these proteins as an electron carrier from cytochrome/(II) to P700+ in photosystem 

1.25 The reaction of each carrier with P700+ is biphasic. Since the rate of the unimolecular 

process (the faster phase) is the same for copper(I) plastocyanin and cytochrome ce(II), these 

two proteins probably interact similarly with photosystem 1.62 Association and reaction 
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between cytochrome/and plastocyanin have been much studied 4-*,14.i?.18.22.24.20.29.55.94.95 ^ut 

mostly with heterologous proteins. Their association is largely electrostatic. 5-*-'4,26,29,55 

This study, however, showed that homologous proteins cytochrome/and cytochrome 

ce from C. reinhardtii associate by hydrophobic interactions. Although the persistent and 

transient complexes differ in reactivity, their different intracomplex rate constants are 

similarly invariant with ionic strength. 

Conclusions 

Photoinduced electron-transfer reactions are "clean" and fast, and therefore suitable 

for the study of protein association. Because electrostatic interactions are relatively easily 

detected and adjusted (by changing ionic strength), they have been much studied lately. 

Metal loprotein association, however, can be governed also by hydrophobic interactions, and 

resulting complexes can be as stable as typical electrostatic complexes. Persistent and 

transient complexes held by hydrophobic interactions differ so much in the interplay between 

electron-transfer step and configurational rearrangement that the intracomplex reaction is true 

electron transfer in the former and gated electron transfer in the latter. Remarkably, these 

reactions occur simultaneously in the same diprotein system. Not only association between 

electron donor and the electron acceptor, but also their self-association, should be kept in 

mind when analyzing complex reaction mechanism and finding unexpected kinetics. 
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Table 1. Rate Constants Obtained from Fitting the Results in Figures 2 and 3 to the 

Mechanism in Scheme 1 and eq 12, and Association Constants Obtained from 

eqs 8 and 9 

ionic strength, W10V ATa/lO^M"' KJ105 M 

mM unimolecular bimolecular from eq 8 from eq S 

mechanism mechanism 

2.5 1.1 ±0.2 6.6 ± 0.2 70 ±20 20 ± 10 

10 1.3 ±0.1 9 ± 2  4 ± 2 6 ± 2 

300 1.2 ±0.4 5.6 ±0.2 4 ± 2 2 ± 1 

700 1.1 ±0.2 1 3  ± 5  8 ± 2  4 ± 2 
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Scheme 1. Mechanism of Electron Transfer 
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Figure 1. Transient-absorbance changes in a solution initially containing 3.0 jliM zinc 

cytochrome cç> and 3.0 jaM cytochrome/(III) in sodium phosphate buffer, at pH 7.0 and ionic 

strength of 300 mM at room temperature, (a) Disappearance of the triplet state 3Zncyt ce 

monitored at 460 nm. The line is a fitting to eq 13. (b) Formation and disappearance of the 

cation radical Zncyt monitored at 675 nm. The line is a fitting to eqs 4-7. 
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Figure 2. Independence of the microscopic rate constant kuni, for the unimolecular 

mechanism in Scheme 1, of the concentration of cytochrome /(III) in sodium phosphate 

buffer at pH 7.0, room temperature, and ionic strength of (a) 2.5 mM, (b) 10 mM, (c) 100 

mM, (d) 300 mM, and (e) 700 mM. The kun\ values are listed in Table 1. Error bars are 

smaller than dots and invisible. 
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Figure 3. Dependence of the observed rate constant k0 bS on the ratio of cyt /(III) and Zncyt c6 

concentrations, in sodium phosphate buffer at pH 7.0, room temperature, and ionic strengths 

of (a) 2.5 mM, (b) 10 mM, (c) 300 mM, and (d) 700 mM. Note the shifting of the plateau 

onset with rising ionic strength. Solid lines are fittings to the mechanism in Scheme 1 and eq 

14. Error bars smaller than dots cannot be seen. 
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Figure 4. Independence of solution viscosity of the relative amplitudes/un; and/bi, 

respectively, of the unimolecular (•) and bimolecular (•) reaction in Scheme 1. Viscosity of 

the sodium phosphate buffer solution at pH 7.0, ionic strength 10 mM, and 20±1 °C was 

adjusted with glycerol. 
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Figure 5. Dependence on the solution viscosity of the intracomplex rate constant for the (a) 

unimolecular and (b) bimolecular reactions in Scheme 1. Viscosity of the sodium phosphate 

buffer solution at pH 7.0, ionic strength 10 mM, and 20±1 °C was adjusted with glycerol. 

Error bars smaller than dots cannot be seen. 
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time (min) 

Figure 6. Chromatograms of a 5.0 (J.M cytochrome /'from C. reinhrdtii. (a) Size-exclusion 

HPLC, with a 100 mM (concentration) sodium phosphate buffer at pH 7.0. Note the shoulder 

preceding the main signal, (b) Reverse-phase HPLC with 0.10% (v/v) trifluoroacidic acid in 

water and 0.08% (v/v) trifluoroacidic acid in acetonitrile. Note the sharpness and symmetry 

of the signal. 
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Figure 7. Size-exclusion HPL chromatogram of the reaction mixture containing cytochrome 

/from C. reinhardtii and a large excess of carbodiimide EDC. Elution solvent is 100 mM 

(concentration) sodium phosphate buffer at pH 7.0. The fractions eluting at 21.1 and 18.3 

min are, respectively, cytochrome/and a cross-linked dimer of it. 
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Figure 8. (a) Surfaces of (truncated) cytochrome/and cytochrome C(, from Chlamidomonas 

reinhartdtii. Color code: blue, basic residues; magenta, acidic residues; yellow, hydrophobic 

residues; green, aromatic residues; and red, heme, (a) Exposed parts of the heme, (b) 

Hydrophobic residues surrounding the exposed part of the heme, the proposed docking sites, 

(c) Basic and acidic patch are assisting association through electrostatic attraction at low 

ionic strength. 



www.manaraa.com

43 

0.0020 ( 

0.00 0.01 0.02 0.03 0.04 

time (s) 

Figure 9. Disappearance of the triplet state 3Zncyt ce, monitored at 460 nm, in the solution 

initially containing 3.0 pM zinc cytochrome ce and (a) 3.0 piM cytochrome/[III) or (b) 3.0 

(iM cross-linked dimer of cytochrome/^!!!). The solvent in both cases is a sodium phosphate 

buffer at pH 7.00 and ionic strength of 300 mM. The triplet state is quenched in (a) but not in 

(b). 
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Supporting Information 
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Figure SI. Relative amplitudes for the unimolecular kinetic phase in the oxidative quenching 

of 3Zncyt c'6 by cytochrome /(III) in sodium phosphate buffer at pH 7.0 at room temperature, 

and ionic strength of (a) 2.5 mM, (b) 10 mM, (c) 300 mM, and (d) 700 mM. Concentration of 

Zncyt C6 is: (a) 1 |-iM, and (b) through (d) 3 pM. Solid lines are fitting to equation 10. 
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Figure S2. Dependence of the ratio of cytochrome /(III) concentration and relative amplitude for 

the unimolecular kinetic phase on the concentration of cytochrome/(III). Solvent is sodium 

phosphate buffer at pH 7.0 at room temperature, and ionic strength of (a) 2.5 mM, (b) 10 mM, (c) 

300 mM, and (d) 700 mM. Concentration of Zncyt c6 is: (a) 1 |_iM, and (b) through (d) 3 ja.M. 

Solid lines are fitting to equation 11. 
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Figure S3. Residuals for the fitting of traces in Figure 9 to the monoexponential function in 

eq 12. (a) An attempt at quenching of 3Zncyt c6 with cross-linked dimer of cytochrome 

XIII)- (b) Quenching of 3Zncyt c6 with monomer of cytochrome /(III). The solvent is 

sodium phosphate buffer having pH 7.00 and ionic strength of 300 mM at room 
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Figure S4. Study by ultracentrifugation of sedimentation equilibrium of cytochrome c6 

dissolved in sodium phosphate buffer at pH 7.0 and ionic strength of 300 mM. Protein 

concentration is varied from 2.0 to 8.0 gM. Equality of the effective molecular mass in 

solution, M, and the nominal molecular mass, Mo, of this protein at all concentrations rules 

out self-association in solution under the experimental conditions. 
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Figure S5. Size-exclusion HPL chromatograms of C. reinhardtii cytochrome obtained 

with a 100 mM (concentration) sodium phosphate buffer at pH 7.0 as eluent. Concentration 

of the protein is: (a) 50 gM, (b) 10 |iM, (c) 5.0 |,iM, and (d) 1.0 j.iM. Elution time of ca. 26 

min is diagnostic of the monomer. 



www.manaraa.com

49 

CHAPTER 3. SIMULTANEOUS TRUE, GATED, AND COUPLED ELECTRON-

TRANSFER REACTIONS AND ENERGETICS OF PROTEIN REARRANGEMENT 

A paper prepared for journal submission 

Tijana Z. Grove1, G. Matthias Ullmann2, and Nenad M. Kostic1'* 

'Department of Chemistry, Iowa State University, Ames, Iowa 50010 and ^Structural 

Biology/Bioinformatics, University of Bayreuth, Universitâtsstr. 30, BGI 95447 Bayreuth, 

Germany 

The Brownian Dynamics calculations were done by Prof. G. Matthias Ullmann. All kinetic 

experiments, fittings, and interpretation of results were done by the primary author. 

Abstract 

We study, by laser flash photolysis, effects of temperature and viscosity on docking and 

kinetics of the electron-transfer reaction between cytochrome ce and its physiological partner 

cytochrome /, both from Chlamydomonas reinhardtii. The hydrophobic interaction is 

energetically comparable, AHa=(4±l) kJ/mol, and ASa=(127±4) JK/'moV1, to electrostatic 

interaction reported for different protein pairs. The net reaction 3Zncyt c6 + cyt/(III) —> 

Zncyt c6
+ + cyt/(II) occurs within the persistent complex of the associated proteins 

(concentration-independent path) with the rate constant kpr and within the transient complex 

of the colliding proteins (concentration-dependent path) with the rate constant ktr. Biphasic 

kinetics and detectable kinetic intermediate,Zncyt ce+, in the entire temperature interval 

studied, from 0.5 to 40.0 °C, show that the two-path mechanism operates throughout. The 
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independence of the rate constant kpr on viscosity, and analysis of Marcus parameters, 

Hab=(0.5 ± 0.1) cm"1, X=(2.14 ± 0.02) eV, indicates that reaction within persistent complex is 

true electron transfer. The Eyring plot for the reaction within transient complex has a cusp 

that corresponds to the temperature of ca. 303 K, AH* =(18.4 ± 0.4) kJ/mol, and AS*=(-122 

± 10) JK"'mor' for the temperature below, and AH* =(-52 ± 1) kJ/mol, and AS* =(-350 ± 30) 

JK^mol"1, for the temperature above ca. 303 K. The rate constant /ctr is viscosity-dependent 

throughout the studied temperature range (283 K-313 K). Protein friction parameters 

obtained from two forms of Kramers's equation differ drastically for the reaction below ca. 

303 K [a=(0.3 ± 0.1), 6=(0.85 ± 0.07)], and for the reaction above [a=(4.0 + 0.9), ô=(0.40 ± 

0.06)]. Intracomplex reaction for the transient complex is coupled electron transfer for 

temperatures below ca. 303 K and is analyzed by an equation that combines adiabatic 

rearrangement step followed by nonadiabatic electron transfer. The same reaction is gated 

electron transfer at the temperatures above ca. 303 K. 

Introduction 

Long-range inter-protein electron transfer is essential for the controlled flow of the electrons 

in biological energy transduction. In physiological processes such as respiration, 

photosynthesis, and metabolic redox reactions, mobile redox proteins transport electrons 

between membrane-bound protein complexes.1'2 These biological processes could be 

properly understood only if protein interactions and reactions are understood on the 

molecular level.3"6 Despite vigorous current research that utilizes a multidisciplinary 

approach, mechanisms of electron-transfer reactions of metalloproteins are only partially 

understood.7 
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It is widely accepted that the same pair of redox proteins may form multiple complexes that 

may undergo essentially the same intracomplex electron-transfer (et) reaction at different 

rates.5,6 A number of cases have been observed in which reactant complex is undergoing 

dynamic fluctuations in configuration, but little is known about energetic contribution of the 

intracomplex rearrangement to the overall et mechanism.4'8"10 We go step beyond intuitive 

notion of facile interconversion between different binding configurations of diprotein 

complex by determining not only rate constants, but also equilibrium constants and estimates 

of activation barriers for dynamic rearrangement. Recently, new paradigm in protein-protein 

interaction and dynamics was designated as the "Dynamic Docking" (DD), in which a large 

ensemble of bound protein-protein conformations contributes to binding, but only some of 

them are reactive.5 

The overall reaction in eq 1 involves protein association, rearrangement (equilibrium 

constant Kr = — ) of the initial configuration(s) (subscript i) into the reactive one(s) 
K 

(subscript r), and electron transfer. The rearrangement and 

kon kx 7 
> . Ket 

A-ox Bred < [Aox Bred] i < [A0x Bred] r ^ [Ared B0x] (1) 
A'oiï k-r 

et steps are differently combined in true, gated, and coupled mechanisms for et.7,11 In true et 

mechanism, the rate-limiting step is electron transfer (kst < kt), and the apparent rate constant 

is simply kei. Reorganizational energy for the et step, X, can be determined by fitting of 

kinetic results to Marcus theory. In gated et mechanism the rate-limiting step is the 

rearrangement (kel > kr)\ although et is experimentally monitored, the apparent rate constant 

is kr. Now, attempts at fitting to Marcus theory are thwarted by the seeming dependence of 

the observed reorganizational energy X on the free energy of rearrangement, AGr. In coupled 
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et mechanism et is the slow step (ket < kr). The faster, but thermodynamically unfavorable (Kr 

< 1) rearrangement affects the apparent rate constant, which is the product Kr»kel. Fitting to 

Marcus theory yields a composite X that has contributions from both et and rearrangement 

steps.7'" This recent classification in terms of kinetic observables and the X parameter is 

useful. Here, we ground this categorization in reaction mechanisms and energetics. 

True and gated et reactions between metalloproteins are known, but coupled reactions 

are still rare and are often conflated with gated reactions. These three mechanisms have been 

elegantly diagnosed, but in studies with different proteins.10'12"16 It is therefore unclear 

whether the diversity in reactivity comes from differences among the proteins or from kinetic 

factors. 

To reach a unified view of protein reactivity, the aforementioned three mechanisms 

need to be compared for the same protein pair. We found such a case. We report that 

different mechanisms can occur simultaneously and can be turned on and off by small 

changes in temperature. We estimate the rate constants kr and k.r, the equilibrium constant Kr, 

and the activation barrier AG* for the protein rearrangement required for et. 

3Zncyt c6 + cyt/(III) —> Zncyt c6
+ + cyt/(II) (2) 

Dynamic mobility and its energetics are governed by protein-protein docking and 

surface interactions. If the rearrangement step of interest is to become rate limiting and 

observable, et step must be relatively fast. We achieve this by replacing iron ion in cyt c6 

with zinc and making redox step photoinduced. The "mutation" of the metal in the protein 

interior does not affect interaction of the Zn substituted protein with reaction partner and 

allows reaction in eq 2 to be well suited system for studying dynamic rearrangement of the 

diprotein complex interface, which is indeed necessary for efficient physiological et 

reaction.8'17 In addition to this, photoinduced reactions do not require external redox agents in 
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solution to initiate reaction by reduction or oxidation of one of the proteins. Since 

temperature and viscosity change will affect both initiation reaction and reaction of interest, 

the interpretation of results would be ambiguous. Because in photoinduced reactions 

interprotein et is triggered by photons, variation in solution conditions will affect only 

reaction of interest. Although et reaction in eq 2 is not strictly biological, photoinduced 

reaction brings to light conformational motions that are crucial for biological functions. 

Reconstitution of the heme in cyt ce with zinc further eliminates complications arising from 

the studies of two heme proteins. Because cyt C(, and cyt/are heme proteins, whose 

absorption spectra overlap, it is almost impossible to follow spectroscopically the 

simultaneous oxidation of one heme group and reduction of the other.18 

We use kinetics of the photoinduced reaction in eq 2 to explore kinetics and 

energetics of dynamic rearrangement within cyt ft Zncyt ce complex that corresponds to the 

process kx shown in eq 1. Investigation of temperature and viscosity dependence of the 

apparent rate constant for the photoinduced reaction in eq 2 reveals that et reaction between 

zinc cytochrome ce and Fe(III) cytochrome f occurs in all three regimes. More over, the 

system can be simply manipulated between regimes. This is the first case, to our knowledge, 

that same net reaction (oxido-reduction in this case) within one metalloprotein pair occurs 

simultaneously as true and gated, or true and coupled et. We show that difference between 

three regimes, true, coupled, and gated, is not semantic but real. Furthermore, these regimes 

can be distinguished experimentally. 
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Photoinduced ET Reaction between Zncyt c6 and Cyt/(III) 

The mechanism of photoinduced reaction is presented in Scheme SI. Laser flash 

produces the triplet state of zinc porphyrin, 3Zncyt c(), which is strong reducing agent. The 

high driving force ( 1.2 V) for the photoinduced reaction, makes et step from the triplet state 

of Zncyt C(, to cyt/(III), relatively fast and non-et dynamic processes observable. In the 

absence of a quencher, natural decay of the triplet state of the porphyrin to its ground state in 

monoexponential ( kn d = 100±10 s"1). In the presence of the cyt/(III) decay of the triplet 

accelerates and is well described with two exponentials. Zncyt exist in solution as 

unassociated (free), and associated with cyt /(III) (bound). 3Zncyt eg formed by excitation of 

bound Zncyt eg is oxidatively quenched with the rate constant kp
e[ in unimolecular reaction 

within persistent complex (right-hand side of Scheme SI). When the porphyrin of free Zncyt 

C(, is excited to triplet state it associate with cyt/(III)to form transient complex and 

unimolecular reaction of electron transfer occurs, with rate constant kpJt, (left-hand side of 

Scheme SI). The rate constant kp^, for the faster of the two phases, is independent of 

concentration of cytochrome/(III), but the apparent rate constant /ctr, for the slower phase, 

increases and then levels off at relatively high cytochrome/(III) concentrations. To avoid 

complications arising from dependence of kir on concentration of cytochrome/(III) protein 

concentrations are adjusted so that cytochrome /(III) is in excess over zinc cytochrome c6. 

Consequently, maximal value of ktr is achieved. It is important to notice that et within 

persistent and transient complexes is unimolecular reaction. The intracomplex rate constants 

for the persistent (kpJt) and transient (ktr) complexes in Scheme SI differ as much as 

thirteenfold, kp^={\.2 ± 0.1) x 104 s"1, and ktr=(9 ± 4) x 102 s"1 in the lOmM phosphate buffer 

at pH=7.00 and at room temperature.10 
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Kinetic Effects of Temperature 

Classical transition-state theory, from which eqs 3 and 4 are derived, assumes that the 

probability of the reaction occurring when activation energy is achieved is approximately 

unity. In that case eq 3 shows enthalpy and entropy of activation that describes transition 

state for the reaction, et reactions are nonadiabatic and Marcus theory, eqs 5 and 6, is 

modified form of transition-state theory that takes into account nonadiabacity of et reactions. 

knT AS" -AH* 
k = exp exp 

h R RT 
(3) 

AG* = AH*-TAS* (4) 

-exp 
h(47dRT) 

k = k0 exp[-p(r-r0)]exp 

(AG° -A)2 

4XRT 

-(AG°-X)2 

4ttRT 

(5) 

(6) 

Biphasic kinetics and detectable Zncytc6
+ in the entire interval studied, from 0.5 to 

40.0 °C, show that the two-path mechanism in Scheme SI operates throughout. We fitted 

temperature dependence of Fr and /ctr to eq 3 to determine enthalpy (AH*) and entropy (AS*) 

of activation, and then obtained free energy of activation (AG*) with eq 4. Since the 

interpretation of activation parameters for nonadiabatic et reactions is ambiguous, AH*, AS*, 

and AG* are given only for comparison of the processes within persistent and transient 

complexes. Unexpectedly but consistently, inspection of the top panel of the Figure 1 and 

comparison of the values for AH*, AS*, and AG* for the reactions within persistent and 

transient complexes reveals that there are three different intracomplex recations: that within 
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the perisitent complex and those within the transient complex(es) above and below ca. 30 °C. 

The "broken" plot in Figure la suggests a change of mechanism for the transient complex; 

this change is reversible by heating and cooling. To our knowledge, such a "broken" Eyring 

plot has not been reported before for protein et reactions. 

Furthermore, analysis of temperature effect on an et reaction in terms of Marcus 

theory can provide initial diagnosis if reaction is true, or coupled or gated et. Figure lb and 

the bottom three rows in Table 1 allow a closer, but still inconclusive, comparison of these 

three reactions. A À, value between ca. 0.7 and ca. 2.3 eV and H\b < 80 cm"1 are symptomatic 

of true et mechanism7, and we tentatively assign it to the reaction within the persistent 

complex. A X value exceeding ca. 2.3 eV is symptomatic of gated et mechanism if 

accompanied by > 80 cm"1 and of a coupled et mechanism if accompanied by Hab < 80 

cm"1. Consistent fittings of k* to eqs 5 and 6 gave the latter combination of results, and we 

tentatively assign the coupled mechanism to the reaction within the transient complex below 

ca. 30 °C. Marcus theory does not apply to /c,'rr because this rate constant reproducibly 

decreases as temperature increases. We will discuss this interesting case below. 

Edge-to-edge distance between electron donor and electron acceptor is an additional 

parameter that can be obtained from eq 6 though it is difficult to judge soundness of obtained 

et distances in the absence of the structure of et active diprotein complex. Brownian 

dynamics simulation of the association of cyt c6 and cyt / yielded many different low-energy 

complexes with interaction energies lower than -8 kT in which the distance between the 

redox centers varies between 12 and 32 A. The values of distance, r, obtained from fitting of 

kpc and k\[ to eq 6 are well within this range. 

The study of temperature effects on reaction in eq 2 indicates that we are able to 

observe three different processes, two of them simultaneously, and that reaction mechanism 
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within transient complex changes at the temperature of approximately 30°C. Moreover, only 

kpr and k^j correspond to processes that are conceivably et, where kpr is possibly rate constant 

for the true et and rate constant for coupled et, judged from the analysis of the parameters 

obtained from fitting of these two rate constants to eqs 5 and 6. 

However, analysis of the temperature dependence of et reaction rates is not sufficient to say 

whether monitored reaction is true, coupled, or gated. Studies that include variation of 

solvent conditions, like viscosity, can provide important information to complement 

temperature dependence studies. In order to further explore nature of detected processes, we 

next studied kinetic effects of viscosity. 

Kinetic Effects of Viscosity 

In previous studies in our laboratory, the solution viscosity was introduced as an 

experimental variable, to detect structural rearrangement of protein complex. Nonbinding and 

conformationally noninvasive viscogens increase molecular friction, impede protein motion, 

and slow down protein rearrangement, without affecting the rate constant for the et step and 

equilibrium constants.8'10'12'14"16'19"21 Noneffect of glycerol on Kd is evident in Supporting 

Material, Fig. S1. 

The rate constant Fr does not depend on viscosity, but the apparent rate constant ktr 

does. Dependence of the rate constants k\[ and k*T on viscosity, shown in Figure 2, was 

fitted to empirical equations 7 and 8, in which r| is solvent viscosity; AG* is the free energy 

of activation for the rearrangement, and o and § are parameters related to the protein friction. 

The eq 7 is modified form of Kramers's theory that recognizes importance of Brownian 

fluctuation in overcoming energy barrier for a process and assumes existence of more than 
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two possible configurations. Equation 8 reduces to Kramers's equation when 8=1. Both 

equations have been used to detect configurational rearrangement of protein-protein and 

peptide-protein complexes.8,10'12'14"16'19"21 The results of fitting are listed in Table 2. 

k = k B T  1  +  T i  

h g + r| 
exp 

T] exp 

-ag; 

RT 

AG; 

RT 

(7) 

(8) 

The markedly different values above and below 30 °C in Table 2 confirm that 

temperature change effects a mechanism change in the transient complex. Because a and 8 

values depend on the protein surfaces accessible to solvent, and exposed surfaces in turn 

depend on buried surfaces, the interface in the transient complex seems to change around 30 

°C. Viscosity effects confirmed that the same two proteins react by three different 

mechanisms, which will be discussed separately below. 

Reaction Within the Persistent Complex 

The small //ab and reasonable X values in Table 1 and viscosity independence of Fr 

consistently indicate that the persistent complex undergoes a nonadiabatic, true et reaction.7 

The negative value - 158 JK 'mof1 in Table 1 suggests that considarable "tightening" of the 

complex is involved in its activation for the et step.14The persistent complex evidently is 

dynamic. We surmise that only some of its configurations are et-active, and that 

configurational fluctuation probably is too fast to affect the et step, which then is rate-

limiting. It is tempting to attribute the aforementioned Marcus parameters to the et-active 

configurations of the persistent complex, but direct evidence is unobtainable. 
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Reactions Within the Transient Complex 

Since photoinduced reactions have high driving force, it is conceivable that with 

increase in temperature -AG° becomes larger than X. The situation where -AG0 > X 

corresponds to Marcus inverted region.22 For the photoinduced reaction in eq 2 to switch 

from normal to inverted Marcus region, its driving force (AG0) would have to increase from 

1.3 eV, the value for the persistent complex, to at least 2.0 eV, the magnitude of X. The 

change of 0.7 eV or more within a temperature interval of only 40 °C is improbable. Interplay 

between the complex rearrangement and et is much more reasonable cause of the temperature 

dependence of kir. 

Both AH* and AS* in Table 1 markedly change as temperature crosses the 30 °C 

mark. Moreover, these two changes compensate each other and are invisible in the composite 

AG* values. That AS* is negative for both branches of the "broken" Eyring plot in Figure 1 

suggests that structural "tightening" of the complex, presumably to improve the donor-

acceptor coupling, is required for et in all cases.14 That the AS*values are very different for 

the two branches of the plot confirms that the et mechanisms are different in the two 

temperature intervals. Next, we will discuss these two intervals separately. 

Gated ET Reaction, Above ca. 30°C. The rate constant for the reaction within 

transient complex that corresponds to the high-temperature branch of Eyring plot is 

decreasing with the temperature. As we discussed previously, this is impossible for the 

interprotein et. Therefore, we will discuss k^T in terms of non-et processes in eq 1. Indeed, 

viscosity dependence of k^T (Figure 2) is diagnostic of structural rearrangement. The most 

striking feature of the reaction within transient complex at high temperature is negative value 

of activation enthalpy (Table 1). Negative AH* values are rare, and we think unknown for 
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metalloprotein reactions. Two general explanations exist.23'24 In one, the reaction mechanism 

may involve an enthalpically favorable and fast preequilibrium step.23 In eq 1 this would be 

the rearrangement, defined by Kr. The "pre-equilibrium" condition would require ket « k.r. 

Because &pr in Scheme S1 represents true et, Fr applies to the et step in any mechanism 

involving this particular protein pair. We justifiably substitute Fr for ket in eq 1 : Fr = 1 x 

10V = ket. Hence the lower limit k.x > 1 x 104 s"1 for this gated mechanism. In another 

explanation, negative AH* with positive AG*, as in our case, suggests that the transition state 

resembles the products.24 Indeed, in structural interconversion of very similar protein 

configurations the transition state and the final state are alike. We cannot choose between 

these two plausible explanations of negative AH*. 

Revealingly, different temperature and viscosity experiments and different theoretical 

fittings of the apparent rate constant k"T gave the same AG* values in Table 1 (above 30 °C) 

and Table 2 (at 40 °C). This equality of the AG* values corroborates the notion that the 

apparent rate constant k*T corresponds to a complex rearrangement, which is slower than the 

et step and therefore rate-limiting for the overall process in eq 1. We conclude that the 

reaction within the transient complex above 30 °C occurs by the gated mechanism. 

Coupled ET Reaction, below ca. 30°C. The HAB value consistent with a 

nonadiabatic reaction and X value considerably greater that that expected of true et 

mechanism, occuring together, are diagnostic of a coupled mechanism", which should not be 

confused with the more common gated mechanism. In the coupled mechanism the apparent 

rate constant depends on the slowest step, which is et, but also on the rearrangement 

preceding et because this rearrangement, although faster than et, is thermodynamically 

unfavorable. The question is whether et that is coupled by configurational rearrangement of 

diprotein complex could be distinguished from gated et. In previous work we expressed 
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rational skepticism to whether solution viscosity can be used to distinguish between coupled 

and gated reactions.10,25,26 Here we show that careful analysis of viscosity dependence data, 

in conjunction with temperature dependence studies, is reliable tool for characterizing et 

mechanisms. 

Because the apparent rate constant depends on viscosity, the process represented 

by klj includes contribution from protein motion. This is one symptom of the coupled 

mechanism. Now we seek evidence for unfavorable equilibrium, the defining feature of this 

intricate mechanism. We justified above the substitution of kpr for ket in eq 9. Since both rate 

constants kx^ and /cpr in eq 9 are known from independent experiments, the equilibrium 

constant is simply obtained with eq 10. 

(9) 

9 • 102s~' 

kpr 1.2*10 s 4 - 1  
- = (0.08 ±0.04) (10) 

The value Kr< 1.0 agrees with coupled mechanism.11 Conversion with eq 11 gives 

AG°, the result that comes ultimately from rate constants k^ and kpr at a given temperature. 

To verify coupled mechanism, we determined AG° again, differently. We combined Eyring 

and Marcus theories in the new eq 12 and applied this hybrid theory to apparent rate constant 

, which, as eq 9 shows, is a product of two factors amenable to these two theories. 

AG?=-RTlnK (11) 

AS0 -AH0 

k1T = exp exp 
47t H, 

R RT h(47iXRT): 
exp 

(AG° -X)2 

4XRT 
(12) 



www.manaraa.com

62 

We justifiably fixed the parameters X and HAB to true-et values in Table 1. Then, fitting 

temperature dependence of to eq 12 gave AH'1=16 ± 3 kJ/mol and AS" =34 ± 8 Jlv'moV1. 

Plugging those values into eq 13 gave AG°, the result that comes ultimately from /% at 

various temperatures. The satisfying agreement of the AG° values obtained in two different 

ways further corroborates our proposition, at the beginning of this subsection, that the 

mechanism is coupled et. 

The relative smallness of the value for ASr is in agreement with rapid but overall 

unfavorable protein rearrangement within diprotein complex that would cause only subtle 

changes in overall structure." If step preceding et is configurational rearrangement of the 

diprotein complex, than the effects of coupling would be manifested mainly in a large value 

of X with relatively accurate distance between redox centers and value of //AB- The positive 

value of ASr would yield experimentally determined value of 7/ab larger that the true value 

and distance would be smaller than the actual et distance." Comparing values of HAB, and r 

in Table 1 for Fr (true et) and k^ we see that this is the case lending additional support to 

suggestion that unimolecular reaction within transient complex, at temperature lower that 

app.30°C, is coupled et. Since standard Marcus theory does not recognize dynamic factors 

such as protein rearrangement, coupled et is better treated with our eq 12, which recognizes 

an interplay between rearrangement and et steps. 

As explained above, kst - 1 x 104 s"1 for this protein pair. The defining criterion of 

coupled et mechanism, stated in the Introduction, gives the lower limit kr > 1 x 104 s"1 for this 

diprotein system. Difference between À, values for the coupled and true reactions in Table 1 is 

approximately 1.0 eV. Because Marcus theory does not fully apply to coupled et reactions, 

this difference is uncertain. Semiquantitatively, however, this increment of ca. 1.0 eV may be 
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taken as the additional reorganizational energy, beyond that for true et, required for coupling 

of the et step with protein rearrangement. 

Configurational Heterogeneity and Energetics of the Protein Complex 

Electrostatic and hydrophobic forces govern affinity and specificity of metalloprotein 

association. In a simple case single binding configuration will be reactive configuration as 

well. The more complex case is where the most stable binding configuration is not reactive 

configuration, and et kinetics may be influenced by the rates and energetics of intracomplex 

conformational rearrangement. In the "dynamic docking" model it is assumed that 

interconversion between binding configurations is allowed. The question is how this facile 

interconversion affects the rate constant for et event. 

Figure 3a shows a remarkable "energy seascape" - two "islands" connected by an 

"isthmus." Two very broad ensembles of diprotein configurations appear to be "bridged" by 

relatively few intermediate configurations. The color-coded height of this "land" is 

proportional to the probability of protein association. The right island, containing the tallest 

mountain, is much more populated, but very long heme-heme distances likely preclude et. 

The left island, featuring two lower hills of probability, is less populated, but heme-heme 

distances are favorable for et. 

Both islands would contribute to the thermodynamic association constant Ka, as 

determined by calorimetry or spectroscopy. Probably only the leftmost region of the left 

island contributes to the rate constants for rearrangement and et in Scheme SI.5 By changing 

temperature and viscosity, we affect the et event little or not at all, but we sample the protein 

configurations by the energies required for their rearrangement. 
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The persistent complex in Scheme SI is probably relatively homogeneous. A 

significant fraction of these configurations probably are et-active, either because the initial 

docking was already optimal or because these configurations rearrange easily. These 

rearrangements are faster than the et step, which therefore becomes rate-limiting. The 

persistent complex reacts by true et mechanism in the entire interval studied, from 0.5 to 40 

°C. 

The transient complex in Scheme S1 is more heterogeneous, because proteins collide 

in various orientations. Indeed, Figure 3b shows a wide range of heme-heme orientations. 

More energy-demanding, and therefore slower, rearrangements are needed for arriving in the 

short-distance region of the left island in Figure 3a. Our experiments below ca. 30 °C engage 

a smaller sample, namely configurations that interconvert accross lower activation barriers, 

in coupled et mechanism. Experiments above ca. 30 °C engage a larger sample, namely 

configurations that interconvert across higher barriers, in gated et mechanism. 

Because true and gated mechanisms are clearly different but occur simultaneously 

(above ca. 30 °C) with the same proteins, we can assess the energetics of gating. We 

reasonably assume that rate of the et step is governed by activation free energy (AG*) and not 

donor-acceptor coupling HAb- Knowing AG°= 1.3 eV and A. = 2.0 ± 0.2 eV (an average in 

Table 1), we calculate AG*for true et to be (AG0 + X)2/4X = 1.8 kgT. Then AG* for the gated 

mechanism involving cytochrome and cytochrome/must be > 1.8 kBT. Activation free 

energies for configurational rearrangement of other proteins, and perhaps biomolecules in 

general, can be estimated similarly. These energies cannot be obtained by fittings to availbale 

theories, and are useful in analyzing protein dynamics. Our method promises to be a general 

one. 
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Conclusion 

Two metalloproteins associate in multiple binding configurations that are close in energy, but 

only few of them are et competent. Depending on the barrier for the interconversion between 

binding configurations ET reaction will occur as true, coupled or gated. In the light of this 

study simultaneous occurrence of different regimes of et is not mere peculiarity, but natural 

consequence of energy landscape with multiple binding configurations that can interconvert. 

Cyt cq and cyt/metalloprotein pair is exceptional in two ways. Association is mainly 

governed by hydrophobic forces and et kinetics exhibits unprecedented heterogeneity.10 It is 

tempting to suggest that these two distinctive characteristics are related and that non-

directional hydrophobic interactions are basis for the energy landscape that is suitable for 

simultaneous occurrence of true and coupled, and true and gated et reaction. 
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Table 1. Temperature dependence of the rate constant Fr and ku (Scheme 1) fitted to Eyring 

(eqs 3 and 4) and Marcus (eqs 5 and 6) theories. 

fitted parameter 
(unit) 

transient 
persistent complex, 

complex,*" <30oCi k,. 

transient 
complex, 

>30°C, C 

fitting 
equation 

AH* (kJ/mol) 2.6 ±0.1 18.4 ±0.4 -52 ± 1 3 

AS* (JK-'mof1) -158 ± 5 -122 ± 10 -350 ±30 3 

AG* (kJ/mol)a 4 9  ± 4  5 4  ± 6  5 7  ± 6  4 

Hab (cm"1) 0.5 ±0.1 4.9 ±0.5 n. d.b 5 

^(eV) 2.1 ±0.1 3.1 ±0.2 n. d.b 5 

X(eV) 1.9 ±0.1 3.0 ±0.2 n. d.b 6 

a Room temperature. 
b Fitting to Marcus theory is unjustifiable. 

Table 2. Friction parameters and activation parameters for the reaction within transient 

complex 

T(K) 
eq 7 eq 8 

T(K) 
a AGa (kJ/mol) Ô AGs (kJ/mol) 

313, (C) 4.0±0.9 59.8±0.2 0.40±0.06 59.0±0.4 

293, (^) 0.2±0.1 56.0±0.2 0.82±0.09 55.3±0.2 

283, (^) 0.3±0.2 53.2±0.2 0.89±0.05 52.5±0.2 
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Figure 1. Temperature dependence of the rate constants Fr and the apparent rate constant ktr 

(Scheme 1) in the sodium phosphate buffer at pH 7.0 and ionic strength of 10 mM. The 

smallest error bars are invisible. The fitting parameters are given in Table 1. (a) The lines are 

fittings to eq 3. Data below and above the break at 30 °C were fitted separately, as and 

. (b) The fittings to eqs 5 and 6 overlap. 
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viscosity (cp) 
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283 K 
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Figure 2. Viscosity independence of the rate constants kpI and viscosity dependence of the 

apparent rate constants k^T and /<,'{ in the sodium phosphate buffer at pH 7.0 and ionic 

strength of 10 mM.. The smallest error bars are invisible. Solid lines are fittings to eq 7; 

dashed, to eq 8. Fitting parameters are shown in Table 2. 
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heme-heme distance [A] 

*\ * 

b 

Figure 3. Results of Brownian-dynamics simulation of cytochrome and cytochrome/at 

ionic strength of 10 mM. One million trajectories gave about 110,000 diprotein 

configurations having association energy of -7 fôT or lower, (a) Probability of association 

(color-coded) as a function of the protein interaction energy and the shortest heme-heme 

distance, (b) Cytochrome/and centers of mass of 5000 cytochrome molecules randomly 

chosen from 110,000. 
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Supporting Information 

Chemicals and Buffers. Distilled water was demineralized to a resistivity greater 

than 17 MQ cm by a Barnstead Nanopure II apparatus. Chromatographic resins and gels 

were purchased from Sigma Chemical Co; hydrogen fluoride, from Matheson Gas Product 

Inc; nitrogen and ultrapure argon, from Air Products Co.; all other chemicals, from Fisher 

Chemical Co. All buffers were prepared from the solid salts NaHiPO^f^O and 

Na2HP04*7H20, and had pH of 7.00±0.05 and ionic strength 10 mM. 

Proteins. Cytochrome/from C. reinhardtii, expressed from E. coli, was isolated and 

purified as described previously.1 Cytochrome ce from C. reinhardtii was isolated and 

purified by the published method.2 Iron was removed, and the free-base protein was 

reconstituted with zinc(II) ions, by a modification of the standard procedure.3 Zinc 

cytochrome C(, was always kept in the dark. Concentrations of the two proteins were 

determined from their UV-vis spectra, on the basis of known absorptivities: cytochrome/(II), 

A8552=26 mivr'cm"1, cytochrome c6(II), Ab552=20 mivr'cm"1, and zinc cytochrome c&. 

AS42I=(2.3±0.1)*105M~'cm~l.4 All proteins were stored in liquid nitrogen. Before each series 

of experiments, the buffer in protein stock solutions was replaced by the working buffer 

using so-called ultrafree-4 centrifugal filter, obtained from Millipore Co. 

Laser Flash Photolysis. Experiments were performed with the second harmonic (at 

532 nm) of a Q-switched Nd-YAG laser. The instrument was described elsewhere.4 Argon 

was passed first through water and then through the buffer solution. The required volume of 

buffer was deaerated in a 10-mm cuvette for at least 30 minutes before proteins were added. 

Concentration of cytochrome/(III) was 3 pM, and that of zinc cytochrome ce was 1 pM . 

Decay of the triplet state was monitored at 460 nm, where the transient absorbance has its 
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maximum. The concentration of the triplet depended on the intensity of the laser pulse and 

was always much lower than the concentration of cytochrome/(III). Pseudo-first-order 

excess of cytochrome/(III) was maintained in all experiments. Formation and disappearance 

of the cation radical were monitored at 675 nm, where the difference between the 

absorbances of this species and the triplet is greatest. To enhance signal-to-noise ratio, at 

least 50 shots were collected and averaged each time. 

Viscosity. The kinetic effects of viscosity were studied in the 10 mM sodium 

phosphate buffer at pH 7.0. Glycerol was added incrementally to the solution containing zinc 

cytochrome and cytochrome/(ni). Because viscosity depends on temperature, these 

additions were made at each temperature anew, for precise control. The viscosity of the 

solution was determined from the tables.5 Solutions were gently deaerated for 10 min after 

each addition of glycerol. 

Temperature. Temperature in the range from 0.5 to 40 °C was kept with a 30-L 

circulating bath Formaa Scientific CH/P 2067. The actual temperature in the cell was 

calibrated with an Omega digital thermometar and was known with precision of ± 0.1 °C. 

Fittings of the Kinetic Data. The rate constants for the reaction in eq 2 in main text 

were obtained from the analysis of the changes of absorbance at 460 and 675 nm with time. 

The former change corresponds to the decay of 3Zncyt ce and is a sum of several exponential 

terms (eq SI). The latter change is caused by both the triplet and the cation radical and is 

described by eqs S2-S5 4 Contribution of the triplet to the absorbance change at 675 nm is 

given by eq S3, in which w, is the instantaneous absorbance after the laser flash. The 

contribution of cation radical is fitted with eq S5. 



www.manaraa.com

74 

AA460 = ^ at exp(-kit) + b 

AAg75 AAtriplet AAcation •cation 

(SI) 

(S2) 

AAtriplet = a, [ 2] f exp(-A-/0] (S3) 
i 

f= a,7(apr + atr) i = pr, tr 

AAcation= ac [exp(-kjaiit) - exp(-kliset)\ 

(S4) 

(S5) 

Kinetic results were analyzed with the SigmaPlot v.5.0, from SPSS Inc. The error 

margins for all rate constants obtained from the fitting of the transient-absorbance changes 

include two standard deviations, i. e, correspond to the confidence limit of 95%. This 

conservative setting of error margins is a precaution against overinterpretation of small 

differences. 

Brownian Dynamics Simulations. The association of cytochrome/and cytochrome 

C6 at ionic strength of 10 mM was simulated using the program Macrodox.6 The theoretical 

basis of these simulations in described in detail elsewhere.6,7 Cytochrome eg moved in the 

electrostatic potential of cytochrome f The energy was calculated by multiplying the charges 

of cytochrome ce with the electrostatic potential that arises from cytochrome f The 

electrostatic potential in these simulations is described by the Poisson-Boltzmann equation.8 

A complex was considered to be formed when its energy was less than -7 kgT. This cut-off 

was chosen to get a reasonable number of docked configurations. In Figure 3 a, the 

probability of occurrence of a docked configuration in the most-populated energy-distance 

bin was set to unity, and populations of other bins were normalized to this value. 

Natural Decay of the Triplet State 3Zncytcv In the absence of a quencher, the 

decay of the triplet excited state of the porphyrin to its ground state is monoexponential (eq 

S6). The rate constant for this natural decay, knd, is 100±10 s"1 in the temperature range 

between 0.5 and 40 °C in the phosphate buffer having pH 7.00 and is independent of protein 
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concentration in the interval from 1.0 to 10 pM and ionic strength in the interval from 2.5 to 

700 mM. 

AA460= tind exp(- Â:ndt) + b (S6) 

Biphasic Oxidative Quenching of the Triplet State 3Zncytc6 by Cytochrome/(III) 

at all Temperatures. In the presence of cytochrome/(III), decay of the triplet is accelerated 

over natural decay. The time course of the decay is well described by a biexponential 

function (eq S7) throughout the whole temperature range, between 0.5 and 40 °C. The rate 

constant Fr is independent of concentration of the cytochrome/(III), but rate constant /ctr 

levels off at relatively high quencher concentration.4 We have chosen protein concentrations 

so that cytochrome/(III) is in an excess over Zn cytochrome c&. 

AA46O= TII exp (- /cprt) + a2 exp (-/ctrt) + b (S7) 

The rate constants for the appearance and disappearance of the redox intermediate, cation 

radical, are independent of the cytochrome/(III) concentration. The increase in the 

absorbance at 675 nm is due to the back reaction (eq S8), and its decrease is due to the 

forward reaction (eq 2 in the main text).5 

Zncyt ce+ + cyt/(II) > Zn cyt c6 + cyt/(III) (S8) 

We observed the appearance and disappearance of the cation radical throughout the 

temperature range studied. 

Temperature Dependence of the Rate Constants kpr and k t r. We fitted temperature 

dependence of kpr and ktr to eq 9 to determine enthalpy (AH*) and entropy (AS*) of activation, 

and then obtained free energy of activation (AG*) with eq 10 in the main text. Fittings of kpr 

and to Marcus theory (eqs 11 and 12 in main text) gave the heme-heme electronic 

coupling (HAB) and the reorganizational energy (X). In the eqs 11 and 12 symbols have their 

usual meanings: Hab is the electronic coupling between the two redox centers; À, is the 
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reorganizational energy; h is the Planck's constant; R is the gas constant; ko is the nuclear 

frequency (lO'V1); ro is the contact distance (3.0 À); P is the attenuation of electronic 

coupling over distance; and r is donor-acceptor distance. For (3=1.0 and (3=1.4 fitting to 

equation S12 yielded the same value of A, within the error bars. The X shown in Table 1 in the 

main text is obtained with (3=1.4. 

Kinetic Effects of Viscosity. The reaction in eq 2 in main text was studied at ionic 

strength of 10 mM and temperatures 10±1 °C, 20±1 °C, and 40±1 °C. The decay of 3Zncyt c6 

remained biphasic at all temperatures throughout the viscosity range studied. The amplitudes 

of both intracomplex reactions were unaffected by viscosity, as Figure SI shows. 

Temperature Dependence of Association between Zinc Cytochrome ce and 

Cytochrome/(III). Temperature effects on the association constant were studied in the 

temperature range from 0.5 to 40 °C. The results in Figure S2 were fitted to equation SI 1. 

K,=exp(-AG,/RT) (S9) 

K,=exp(ASo/R)exp(-AH/RT) (S 10) 

/"=( 1 /2 [Zncytc6] o)  * {[Zncytc6] 0 + [cyt/(III)]0 +(exp(ASc,/R)exp(-AHti/RT))"1 -

(([Z n c y t c 6 ] 0 +  [ c y t / ( I I I ) ] 0  +  ( e x p ( A S a / R ) e x p ( - A H t i / R T ) ) " 1  f  -  4 [ Z n c y t c 6 ] o [ c y t / ( I I I ) ] o ) 0 ' 5 }  ( S I  1 )  

Values for enthalpy and entropy of association obtained from the fitting are AH„=(4±1) 

kJ/mol, and ASa=(127±4) JK^mol"1. Free energy of association calculated from these two 

parameters is AGa= - 33 kJ/mol. From the kinetic experiments, using relative amplitudes, we 

calculated the equilibrium constant4, Ka=(6±2) 105 M"1, and from the eq S13 AG„= -33 

kJ/mol. These values of AGti are obtained from the two different sets of experiments and are 

in full agreement. 
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Figure S2. Independence of solution viscosity of the relative amplitudes/" and f, 

respectively, of the electron-transfer reaction occurring within persistent (•) and transient (•) 

protein complex in Scheme 1 at different temperatures. Viscosity of the sodium phosphate 

buffer solution at pH 7.0, and ionic strength 10 mM was adjusted with glycerol. 
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Figure S3. Temperature dependence of the relative amplitude/" for the reaction between 

3Zncytc6 and cyt/(III), in sodium phosphate buffer at pH 7.0 and ionic strength 10 mM. The 

solid line is fitting to eq S11. 
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CHAPTER 4. COMPARISON OF PLASTOCYANIN AND CYTOCHROME C6 IN 

THEIR REACTION WITH CYTOCHROME F 

Introduction 

In the processes of biological energy transduction, soluble redox proteins facilitate 

electron transport between membrane-bound protein complexes.1"4 In oxygen-evolving 

photosynthetic organisms, electrons flow from water to ferrodoxin, an iron-sulfur protein that 

is the starting point for the distribution of electrons for metabolic reactions outside the 

thylacoide. The electrons are driven uphill from the redox potential of the water/dioxygen 

couple to the redox potential of the hydrogen electrode. Each electron from water needs two 

photons to reach the redox level of the hydrogen electrode. Water lysis is carried out by 

photosystem II (PSII), whereas ferredoxin reduction is performed by photosystem I (PSI). A 

third membrane-bound complex, that functions between PSII and PSI, is the cytochrome b(f 

(cyt b(f) complex. The three complexes are connected by mobile redox carriers (Figure 1). 

The transfer of electrons from PSII to cyt b(f is mediated by hydrophobic quinones, which 

move in the membrane, while the electron transfer from cyt b(f to PSI inside the thylacoide 

vesicle is carried out by soluble metalloproteins, cytochrome eg (cyt c6) or plastocyanin (pc) 

which are the subject of this study.1 

Previously, it was widely believed that plants produce only pc, whereas eucaryotic 

algae and cyanobacteria synthesize either pc or cyt c&, depending on copper availability.2'3'5'6 

Recently, modified cyt c6 was discovered in several plants, but the function of this protein is 

still puzzling.1,2,7 The structural and functional analysis of plant cyt eg revealed that this 

protein is not an effective donor to its own PSI.8 The comparative kinetic analysis of redox 
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reactions of pc and cyt C(, with their physiological partners is thus very interesting not only 

from mechanistic point of view, but from evolutionary point of view as well.1,9 

Although they belong to different classes of proteins, pc and cyt c6 perform 

equivalent reactions with common partners. Extensive investigative effort has been aimed 

toward establishing the structure-function relationship that allows these two proteins to have 

identical function despite their different structure.1'10"14 The C. reinhardtii system is of 

particular interest because it is the first photosynthetic organism examined capable of using 

both pc and cyt to transfer electrons to P700+ of PSI at a high rate that is the same for both 

proteins.1 Furthermore, the high resolution crystal structures of cyt/(lumenal part of cyt b(f 

complex), pc and cyt from C. reinhardtii have been determined.6'11'15 However, all the 

kinetic analysis of cyt/oxidation so far has been made only with pc. The spectrophotometric 

study of the electron-transfer (et) reaction between cyt/and cyt by following the redox 

changes in any of two c-type cytochromes is not possible experimentally because of the 

overlapping chromophores.1,9 

In our laboratory, we were able to overcome the problem of overlapping 

chromophores by substituting the redox active Fe(II) in the heme of cyt c6 with redox 

inactive Zn(II) ions.9 It has been shown that this substitution does not significantly perturb 

the structure of c-type cytochromes or their interaction with reaction partners.16,17 The 

lowest-lying triplet state of Zncyt C(, is an excellent reducing agent and is easily created with 

a laser flash. Additionally, the photoinduced reactions are convenient because external 

reducing agents are not needed so the interpretation of the kinetic data is unambiguous. I8"20 

By following the disappearance of the triplet state of Zncyt we were able to study et 

reaction between cyt/and cyt To our knowledge, this is the first time that the et reaction 

between cyt / and cyt was studied.9 
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The purpose of this work is to summarize the current knowledge on et reactions 

between cyt/with its biological partners pc and cyt eg. In this chapter we focus on 

comparison of cyt C(, and cyt/kinetic results with available literature data for pc and cyt/ 

reaction. 

Since some recent data suggested that the mechanisms of et reaction for cyt / with pc 

and with cyt C(, might differ among diverse organisms, we will mostly concentrate on the 

proteins from C.reinhardtii.13 

Reaction Partners 

Cytochrome/. Cyt/is the lumen-exposed redox center in the membrane-bound cyt 

b(f complex. Its function is analogous to that of the mitochondrial/bacterial cytochrome c\ of 

the cyt bc\ complex.1 In photosynthetic cells, cyt/is attached to the thylacoid membrane. 

The soluble form, used for kinetic and structural studies, lacks the last 35 residues that 

include membrane-anchoring a-helix. The modified protein is redox active in vivo and has 

optical properties very similar to the "wild-type" protein. It has a redox potential value of 

+365 mV at neutral pH and molecular mass of ca. 30 kDa. The crystal structure of the 

truncated form of cyt/from C. reinhardtii has been determined with a resolution of 2Â." 

Cyt/is made of two distinctive domains with the heme group located near the 

interface of the domains (Figure 2A). The heme is covalently bound to the protein by 

thioester bonds through the Cys-X-Y-Cys-His sequence characteristic of c-type cytochromes. 

The axial ligands are a histidine group and surprisingly, the «-amino group of the N-terminal 

residue Tyrl. The heme is almost completely buried in a hydrophobic pocket. The two 
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propionic acid side chains and one of the vinyl groups are the only portions of the heme that 

are solvent exposed.11 

Besides the atypical heme axial ligation, the main structural characteristics of cyt/are 

the cluster of lysine residues shown to be the docking site of pc, and the chain of seven water 

molecules that extends between the heme pocket and the lysine cluster. Dimerization of 

cytochrome/in the crystal has recently been considered." Seven possible contacts between 

the protein molecules were identified and a model for the dimer was proposed. However, 

because certain angles, calculated on the basis of this model, disagreed with the 

corresponding angles estimated from the EPR spectra of oriented membranes, the 

crystallographers concluded that protein-protein orientation in the crystal differs from the 

orientation in the complex of cyt è6/ which is believed to be dimeric under physiological 

conditions." In our previous study9 we were able to detect the dimerization of cytochrome/ 

from C. reinhardtii in aqueous solution. Covalent cross-linking of cyt/followed by size-

exclusion chromatography gave one distinct fraction, whose molecular mass is 

approximately double that of the protein (monomer). Since ionic strength of this solution is 

very high (700 mM), so that all electrostatic interactions are cancelled, we concluded that the 

protein dimer is held together by hydrophobic forces.9 We can only speculate about the 

implications in vivo of this process, which we documented in vitro. The membrane-bound cyt 

b(f was purified and crystallized as a dimer, but resolution of the structure was low, so it is 

unclear which cyt b(f constituents form the dimer interface. Within thylacoid lumen, cyt/is 

confined to an intermembrane space only 40-90 Â wide, anchored to the membrane, and 

associated with Rieske protein.5 In solution, however, cyt/can diffuse freely. We detected its 

dimerization at ionic strengths of both 300 and 700 mM, conditions relevant to the ionic 

strength 300 mM in vivo.2{ An interesting feature of this apparent dimerization is the loss of 
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redox reactivity towards Zncyt <%. Because the cyt/dimer is formed owing to hydrophobic 

interactions, it is likely that protein molecules cover each other's nonpolar surfaces and the 

heme edge is no longer accessible to zinc cyt c^.9 To our knowledge this is the first case that 

kinetics of interprotein electron-transfer reaction is modulated by protein self-association. 

Plastocyanin. The pc is a type I copper protein with a redox potential of ca. +370 mV 

at pH of 7.0. The copper atom is located in a pocket formed by conserved hydrophobic 

residues. The copper is coordinated by two nitrogen atoms of the imidazole rings of two 

histidines and two sulfur atoms from one methionine and one cysteine. Comparison of all 

known crystal and solution structures of different pc indicates that the proteins derived from 

different species have an almost identical overall fold (Figure 2B). The eight p-sheets form a 

P-sandwich with the copper atom in the "northern end" of the molecule. The region around 

the solvent-exposed coordinating histidine is known as the "north side" or "hydrophobic 

patch" and is implicated in the interaction with PSI. Another potential binding site is a 

"negative patch" located around the solvent exposed, conserved Tyr83. This site is 

implicated in interaction with cyt/by virtue of attractive electrostatic interaction.1,2 

Cytochrome ce. Cyt c& from C. reinhardtii is a class I c-type cytochrome that has a 

redox potential of ca. +350 mV at pH of 7.0. The main structural characteristics of cyt eg are 

a short, two-strand anti-parallel P-sheet in the vicinity of the methionine axial ligand, and a 

nonpolar area around the heme (Figure 2C).6 The heme group is covalently bound to the 

protein chain through two cysteines and the axial ligands are one histidine and one 

methionine. The heme is largely buried in the protein interior; only the propionate oxygens 

and the edge of the heme are exposed to solvent. The area around the heme is nonpolar 

except for two Lys residues and one Asp. Comparative study of surface potential maps for 

six different cyt c6 (structurally characterized) revealed a similar charge distribution. In all 
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cases the surface surrounding the heme groups is distinctively hydrophobic, while most of 

the negative charges are located on the opposite side from the heme. The surface area 

surrounding the exposed heme crevice is generally considered to be the site for molecular 

recognition during electron-transfer which, in the case of cyt c6, would be hydrophobic.22 

Structural Comparison of Cytochrome and Plastocyanin 

Despite the great difference in the primary and secondary structure of cyt ce and pc 

there are a number of common features (Figure 1). As expected, the two proteins have 

comparable physicochemical properties: the molecular mass, electrostatic potential, and 

isoelectric point.6'11 Furthermore, they have comparable surface characteristics.1 Numerous 

structural studies, mainly molecular dynamics and NMR, were done with the goal of 

establishing the structure-function relationships that allow cyt eg and pc to play the same 

^4,,0,13,23-26 

In order to compare cyt eg with pc, Ullmann et al.24 developed a new theoretical 

model termed FAME. In this approach, cyt eg and pc were aligned in a way that maximizes 

similarities in their electrostatic potential. This study resulted in recognition of the acidic 

patch in cyt eg that consists of five negatively charged residues. By analogy, the acidic patch 

of pc could be recognition site for cyt f Moreover, it was implied that the aromatic residue 

Trp63 in cyt eg has a similar role to the Tyr83 in pc.24 

In 1997, Ullmann et al.23 performed a theoretical study of association between pc and 

cyt f. Molecular dynamics simulations, in addition to Monte Carlo method, yielded six 

possible configurations of the diprotein complex. But only in two of these six complexes was 

the iron-copper distance less than 30Â. Applying the Pathways method and thermodynamics 
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calculations to the six configurations with the lowest energy, the authors discovered that the 

configuration with the highest binding affinity is not the one that provides the best electronic 

coupling. Implication of this finding is that the initial docking complex with the highest 

binding affinity needs to rearrange into the complex that is electron-transfer active, the one 

with the best electronic coupling between the redox sites. This binding picture offered a 

plausible explanation for an interesting finding that covalently bound diprotein complex of 

cyt/and pc is unreactive. Cross-links without any tethers make the covalent complex rigid 

and preclude the rearrangement from the most stable configuration to the most reactive 

one.^J* 

The Brownian dynamics simulation of the interaction of C. reinhardtii cyt/ with cyt 

C(, and pc concluded that complexes formed between cyt/and cyt closely resemble those 

formed between cyt/and pc.10 In each case, electrostatic attraction between negatively 

charged residues in cyt eg and pc and positively charged residues in cyt/holds the proteins in 

the proper orientation for electron-transfer. Residues involved in the complex interface are 

hydrophobic in both cases. Although the most interesting result of this particular study is the 

similarity between the cyt //cyt ce and cyt flpc complexes, the method used here has serious 

pitfalls. While hydrophobic interaction is invoked in complex formation, it is not explicitly 

included in the calculation. Moreover, the diprotein complexes were not subjected to energy 

minimization. In order to obtain structures of active electron-transfer complexes in Brownian 

dynamics simulations, it is necessary to include both hydrophobic interactions and energy 

minimization.10 

A combination of NMR data and molecular dynamics allowed a closer look into the 

structure of the transient complex between pc from spinach and cyt/from turnip.25 It was 

determined that both the hydrophobic and acidic patch of pc make contact with the cyt / 
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surface. A single structure, with the short electron-transfer distance between the heme group 

of cyt / and copper atom of pc, was obtained under a variety of experimental conditions. The 

NMR chemical-shift mapping confirmed that both acidic and hydrophobic patches of pc are 

involved in complex formation with cyt / In the diprotein complex, pc has a single, well-

defined orientation with the tightest contact at the hydrophobic patch. The study suggested 

that the hydrophobic interaction is responsible for the tight fit between proteins, while 

electrostatic attraction between the acidic patch of pc and the basic patch of cyt / increases 

affinity of these proteins for each other.4'26'29'30 

A very recent NMR study characterized the interaction of cyt / from P. laminosum 

and two cyanobacterial cyt ce (Anabena and S. elongatus). P. laminosum cyt / utilizes 

electrostatic attraction for initial docking with Anabena cyt ct, but the interaction site is 

mainly composed of hydrophobic residues that are involved in complex formation.4'13 NMR 

titration of P. laminosum cyt/into S. elongatus cyt ce provided no evidence for specific 

complex formation but rather very dynamic, nonspecific interaction between these proteins. 

One of the important conclusions of this very first study on association between cyt C(, and 

cyt/is that apparently, the mechanism of electron-transfer reaction for cyt and pc with 

their partners will be different for the proteins from the different organisms. Moreover, while 

in the pc/cyt / complex pc and cyt/have a single, well-defined orientation, the cyt c& and cyt 

/complex is less defined and more dynamic.13 

Structural studies aimed at comparison of surface properties of cyt c& and pc and their 

implications to the interaction with cyt/ emphasize the similarity of the complex interface in 

cyt /cyt C(, and cyt f/pc complexes.410'13,24 Whether the dynamics and mechanism of electron-

transfer reaction will be similar as well requires kinetic study. 
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The Mechanism of Electron-transfer Reaction 

Reaction of PSI with Plastocyanin and Cytochrome The reaction mechanism 

and factors influencing reduction of PSI with pc and cyt C(, have been extensively 

studied.1,12,14,31 A number of recent studies have demonstrated that pc and cyt c6 react with 

PSI in different ways depending on the organism.1 The PSI reduction follows monophasic 

kinetics in most cyanobacteria but a biphasic mechanism in eukariotic organisms and some 

cyanobacteria.1 C. reinhardtii is the first photosynthetic organism examined capable of using 

both pc and cyt c6 to transfer electrons to P700+ of PSI at a high rate that is the same for both 

proteins.1 The biphasic kinetics of electron transfer from both pc and cyt to P700+ in C. 

reinhardtii correspond to a fast first-order reaction within a preformed complex and a 

bimolecular reaction resulting in second order kinetics. The rate constant for the 

unimolecular reaction is the same for pc and P700+ and cyt and P700+. This suggests that 

cyt Cè and pc have the same orientation in the binding pocket of PSI with respect to 

electrostatic and hydrophobic interaction.14 Mutation and ionic strength studies strongly 

suggested that electrostatic interactions between the positively charged PsaF subunit of PSI 

and the negatively charged donor proteins are important for efficient electron transfer. 

However, at high ionic strength the electron transfer to PSI is inhibited more from pc than 

from cyt ce-1,14 

Reaction between Cytochrome/and Plastocyanin. Because the heme and blue 

copper chromophores give distinct absorption spectra, reaction of these two proteins can be 

easily followed. Thus, much research has been done during the past decade on reaction 

between pc and cyt/1,15 The observed rate constant linearly depends on concentration of 

proteins. The intracomplex rate constant (eq 1) is 2800 s"1 in 
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pc (II) + cyt/(II) -> pc (II)/cyt/(II) -> pc (I) + cyt/(III) ( 1 ) 

the electrostatic complex but less than 0.1 s"1 in the covalent complex obtained by 

noninvasive cross-linking.3,5,21'27,28 This contrast was interpreted in terms of the modulation 

of electron transfer in the electrostatic complex by structural rearrangement of pc from a 

docking site to the reactive site.23 

Kinetics and structural studies of the reaction between pc and cyt/indicated that 

electrostatic attraction governs the association between these two proteins. The rate constant 

for the et reaction between these two proteins decreases monotonically as ionic strength 

increases, clear evidence for electrostatic attraction between cyt/and pc.5'21 In order to 

explore protein association, multiple mutants within the basic patch of cyt/were made.5 In 

vitro and in vivo reactions of the wild type and mutant proteins gave somewhat contradictory 

results. 

The study reported by Soriano et al.3,5,21 showed that oxidation of cyt/in vitro is rate 

limited by the long-range electrostatic attraction between positively and negatively charged 

patches on the surface of cyt / and pc, respectively. The positively charged residues that were 

subject to mutagenesis were Lys 188 and Lys 189 in the small domain and Lys58, Lys65, and 

Lys66 in the large domain of cyt / Neutralization of Lys 188 and Lys 189 caused a decrease in 

the ionic strength dependence. Triple mutant Lys58-Lys65-Lys66 had a rate constant of cyt/ 

oxidation by pc at least 10-fold smaller than wild type, and complete loss of ionic strength 

dependence. In the context of in vivo studies3, in contrast, there was no observable effect of 

positive charge elimination on cyt / oxidation by pc. The discrepancy between results 

obtained in vitro and in vivo remains unresolved although several feasible explanations have 

been offered.1,5 
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Reaction between Cytochrome/and Cytochrome Cyt c6 and cyt/are both c-

type cytochromes and their absorption spectra overlap. This precludes monitoring the change 

in oxidation states spectrophotometrically.1,9 We were able to surmount this difficulty by 

replacing the heme iron in cyt C(, with zinc (II) ions. Zncyt ce offers many advantages over 

the native species. It is easily excited by the laser pulse and converted to the triplet state. This 

long-lived state is a good reducing agent. Another advantage of 3Zncyt eg is that external 

redox reagents are not needed to initiate the reaction between Zncyt ce and cyt /19,20 

Although this photo-induced reaction is not strictly biological, it allowed the close look into 

the dynamics and mechanism of electron exchange between cyt c6 and cyt/ Two studies, 

described here, and presented in full in the earlier chapters of the thesis, may be the first of 

that kind.1,9 

The oxidative quenching of the triplet state of zinc cyt by cyt/III), reaction (2), 

was analyzed in terms of protein docking and electron transfer. 

3Zncyt c6 + cyt/(III) -» Zncyt c6
+ + cyt/(II) (2) 

The overall reaction is biphasic. The faster phase corresponds to the concentration-

independent, unimolecular reaction within the so-called persistent complex. The slower 

phase is concentration dependent and corresponds to the bimolecular reaction within the so-

called transient complex. The rate constants for both intracomplex reactions, within 

persistent or transient complex, are ionic strength independent. The association constant Ka 

for zinc cyt c6 and cyt/III), obtained from the amplitudes of the two kinetic phases, remains 

constant in the range from 700 mM to 10 mM, and then rises slightly as ionic strength is 

lowered to 2.5 mM.9 Evidently, docking of cyt c& and cyt/from C. reinhardtii is due to 

strong hydrophobic interaction slightly augmented by weak electrostatic attraction. This 

hydrophobic interaction is energetically comparable, AHa=(4±l) kJ/mol, and ASa=(127±4) 
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J/Kmol, to the electrostatic interaction reported for different protein pairs.32 In contrast to the 

interaction of cyt/and pc, where docking was due to the electrostatic attraction, interaction 

of cyt/and cyt is governed by hydrophobic forces. Moreover, whereas et reaction of cyt/ 

with pc follows simple collisional mechanism, cyt/and cyt displayed greater kinetic 

complexity.9'27'28'32 To further examine the et reaction between cyt/and cyt ce we studied 

effects of temperature and viscosity on the intramolecular rate constants. 

In a long-range protein et reaction it is often required that a non-et event, such as 

association or rearrangement, optimize or activate the system for et. In such cases it is 

difficult to ascertain whether the observed rate constant is the rate constant for the et. A 

kinetic model has been developed that defines kinetically complex et reactions as true, gated 

or coupled.33"35 We analyzed the et reaction between cyt/and cyt in terms of this kinetic 

model, and discovered that surprisingly all three mechanisms, true, gated, and coupled, 

operate simultaneously in the cyt/and cyt system. Molecular dynamic studies, in addition 

to kinetic analysis, yielded the interaction scheme in which cyt/and cyt C(, dock into many 

binding configurations where only a very few of them are et active. A diagram that plots the 

distance between the electron-transfer active sites and the interaction energy of the complex 

vs. the probability of occurrence shows two minima, each representing a subset of highly 

populated configurations. Thus, in order to form complexes optimal for electron transfer 

(judging from the distances), configurations in both subsets need to rearrange into an et 

active configuration.32 The ratio of activation free energies for this rearrangement and et 

reaction determines if the reaction will proceed as true, gated or coupled. Indeed, certain 

aspects of the described interaction scheme were observed previously, but never 

simultaneously within one protein pair.19,36"39 
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Conclusion 

The reaction between cyt/and cyt is even more interesting when contrasted with 

the cyt/and pc reaction. As mentioned previously, cyt c6 and pc have similar physico-

chemical properties.6,11 Cyt c6 and pc are both efficient in interaction with the common 

partners.112 However, cyt ce exhibits far more complex kinetics in reaction with cyt/than 

does pc,9'32 It is tempting to speculate that non-directional hydrophobic interaction between 

cyt/and cyt c6 is the basis for the energy landscape that is suitable for such heterogeneous 

kinetics. More to the point, this is not the first study in which cyt and pc behave differently 

with a common partner, although at first glance both reactions seem equally efficient and 

mechanistically identical. Cyt ce is more efficiently cross-linked to PsaF unit of PSI (100%), 

than is pc. Moreover, the rate of et from cyt to PsaF in the cross-linked complex is 

identical to the rate of et in the native complex;12 the strong indication that cross-linking 

actually captures the complex in an orientation that is already optimal for the et reaction and 

further rearrangement is not needed. This finding parallels the situation observed for cyt 

<Vcyt/persistent complex in which one of two intracomplex reactions is viscosity 

independent, meaning that some of the initial docking-configurations are et active.32 

However, only about 33% of cyt C(, cross-linked to the PsaF is able to perform et suggesting 

that majority of covalently captured binding configurations is not et active.12 These 

configurations, although favorable for binding, obviously require rearrangement to become 

reactive. 

A detailed understanding of how electron-transfer proteins recognize, interact, and 

react with each other has emerged only recently. Because the electron-transfer event occurs 

across a dynamic protein-protein interface, observed kinetics may depend on the geometry of 



www.manaraa.com

94 

the diprotein complex, the extent of binding, and the dynamics of the docking rearrangement. 

This comparative study of two apparently similar proteins, cyt ce and pc, demonstrated that 

even subtle differences in binding surfaces can cause very different kinetic behavior. 
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Figure 1. Linear electron flow in photosynthetic electron-transfer chain. Electrons are 

transferred from water to ferrodoxin by three membrane complexes PSII, cyt &</, and PSI, 

which are connected by the mobile carriers plastoquinone (PQ) and cyt or pc. 
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A 

Figure 2. Tertiary structures of (A) cyt f (B) pc, and (C) cyt c6. Metal atoms are in the space­

filling representations, porphyrin ring in ball-and-stick, and polypeptide chain in flat ribbons. 
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CHAPTER 5. CONCLUSIONS 

Replacement of iron in cytochrome ce with zinc(II) ion allowed us to investigate 

electron-transfer reaction between cytochrome eg and its physiological partner cytochrome /, 

both from Chlamydomonas reinhardtii. We used photo-induced reaction as a tool to look at 

association of these two proteins and to explore dynamics of the protein-protein interaction. 

In our studies of electron transfer between 3Zncyt ce and cyt/(III), we discovered two 

distinct intracomplex processes corresponding to electron transfer within diprotein 

complexes termed persistent and transient. The overall reaction remained biphasic and the 

rate constants for both processes were invariant to the change of ionic strength within the 

studied interval. The association constant Ka for zinc cyt and cyt/(III) remains (5 ± 3)x 105 

M"1 in the ionic strength range from 700 mM to 10 mM, and than rises slightly, to (7 ± 

2)xl06 M"\ as ionic strength is lowered to 2.5 mM. Evidently, the docking of these proteins 

from C. reinhardtii is due to strong hydrophobic interaction slightly augmented by weak 

electrostatic attraction. 

As the ionic strength and the concentration of cyt /(III) in solution is raised, cyt / 

increasingly associated not only with cyt ce but also with itself. We used covalent cross-

linking and size-exclusion chromatography to capture dimers of cyt /(III). The most 

interesting feature of this apparent dimerization is the complete loss of the reactivity of 

dimerized cyt/(III) toward 3Zncyt c6. We can only surmise about the significance in vivo of 

this process. To our knowledge this is the first case in which kinetics of interprotein electron-

transfer reaction is modulated by protein self-association. 

Analysis of the temperature and viscosity effects on the overall reaction between cyt 

C(, and cyt/revealed that reaction within persistent complex is true electron transfer, but 
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mechanism of reaction within transient complex switches from coupled to gated at the 

temperature of ca. 303 °K. This is the first case, to our knowledge, that same net reaction 

(oxido-reduction in this case) within one metalloprotein pair occurs simultaneously as true 

and gated, or true and coupled electron transfer. True and gated electron-transfer reactions 

between metalloproteins are common, but coupled reactions are still rare and are often 

confused with gated reactions. Here, we propose the equation that adequately treats adiabatic 

and nonadiabatic features of coupled mechanism. We show that the difference between three 

regimes, true, coupled, and gated, is not semantic but real. Furthermore, these regimes can be 

distinguished experimentally. The simultaneous occurrence of all three mechanisms within 

the same metalloprotein pair allowed us to estimate the energetics of protein interfacial 

rearrangement that modulates mechanism of electron-transfer reaction. Brownian dynamics 

calculations support dynamic picture that we infered from the kinetics studies. 

Comparison of cyt and plastocyanin in their reaction with cyt / revealed that the 

identical function and seemingly very similar physico-chemical properties of the two proteins 

are not a guarantee that the common reaction will follow a common mechanism. Brownian 

dynamics simulation offers broad picture of possible binding configurations between two 

proteins. However, in kinetics experiments only configurations that are reactive are 

observable. The stark difference between cyt C(j cyt/and plastocyanin/cyt/pair is that in the 

former mainly hydrophobic forces govern docking into reactive configurations, while in the 

later electrostatic attraction is responsible for protein association. 

Specific recognition and binding between proteins occur widely in biological 

systems. The studies included in this dissertation show how kinetics can be used as a tool to 

develop a physical picture of the interaction between two electron-transfer proteins. Many 
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aspects of the discussion presented here are applicable to protein-protein interactions in 

general. 
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APPENDIX 

Preparation of Zinc Cytochrome C(, 

Electron-transfer reactions of metalloproteins play an essential role in many 

biological processes. Detailed study of their molecular mechanism is interesting from a 

biological, chemical, and biophysical points of view. The diverse factors that govern 

reactions in vivo, at the cellular level, can be separated and studied in vitro, at the molecular 

level M. 

Various heme proteins are ubiquitous in biological systems. The problem of 

studying thermal redox reaction between two heme proteins lays in the fact that their 

absorption spectra overlap 5'6. This makes spectrophotometrical monitoring of changes in 

oxidation states difficult. A solution to this problem is to replace redox-active iron in the 

heme by redox-inactive zinc(II), so that the redox step becomes photoinduced. 

Just as the peptide part of the protein can be modified by means of mutagenesis, so 

the active site of the protein can be modified by methods of coordination chemistry. 

Derivatives of cytochromes containing various metals in the place of iron have been 

characterized and used to probe structure, function, and reactivity of these proteins. Zinc 

cytochrome c has been used in kinetic studies of electron-transfer reactions in our and other 

laboratories 1'2'7"14. 

Especially useful for kinetic studies is the lowest-lying triplet excited state. Its 

lifetime is between 7 and 15 ms, depending on the protein purity. Because the lifetime is 

relatively long, redox quenching of this excited state can be studied easily. The advantages of 

zinc substituted cytochromes are multiple. Because excited triplet-state can be easily created 
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by the laser, no external reducing agents are needed. Thus the interpretation of results is 

straightforward. Moreover, the triplet state of zinc cytochromes is much stronger reductant 

than the native protein5'8. 

Here we present the procedure for zinc reconstitution of cytochrome c6. 

Cytochrome c6 is a c-type cytochrome. The heme is covalently attached to the protein 

backbone through two cysteines. Axial ligands to iron are nitrogen form the histidine and 

sulfur from the metionine 15. The cytochrome c6 closely resembles cyt c in its heme binding 

and iron coordination, so the procedure presented is a modification of the original procedure 

for reconstitution of cytochrome c l6,1?. 

Experimental Procedure. 

All experiments involving hydrogen fluoride were done inside the hood. The 

researcher was protected with a respiration mask, eye goggles, a face shield, two pairs of 

gloves (latex and rubber), laboratory coat, and plastic apron. All experiments involving 

metal-free cytochrome c6, and zinc cytochrome c6 were done in dark or under the red light. 

The protein solution was dialyzed against the water to remove buffer and salts and 

then lyophilyzed. About 5mg of the protein powder was placed into the Teflon beaker 

through a cone of glassy paper. The beaker was submerged into a Dewar holding liquid 

nitrogen. Subsequent steps were done under the red light. Hydrogen fluoride gas from the 

lecture bottle was passed through the Teflon tubing into the open beaker for about 40 

seconds. The beaker was removed from the liquid nitrogen and the content was stirred with a 

Teflon rod until melted. The beaker was again placed in the liquid nitrogen and hydrogen 

fluoride gas was passed into it for additional 30 seconds. The Teflon beaker was removed 

from the liquid nitrogen and the content was stirred with the Teflon rod until melted and then 

for additional 3 to 5 minutes. The small amount of residual HF in the Teflon beaker was 
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removed by a current of ultrapure argon. The argon was stopped when white fumes no longer 

emerged from the beaker. The exposure of the solution to the current of argon will reduce the 

solution volume, care should be taken not to dry it out. The solution was resuspended in the 

total volume of 2 ml of 20 mM acetate buffer + 8M urea, pH 5.2. Solution was loaded onto 

the Bio-Rad prepacked PD 10 desalting column, equilibrated with the 20 mM acetate buffer 

+ 8M urea, pH 5.2 (equilibrate column immediately before use). The protein was eluted with 

the same buffer and entire colored fraction was collected. The visible absorption spectrum of 

the effluent was recorded. Metal-free cytochrome c6 (H2cytc6) has characteristic peaks at 

506, 540, 568, and 620 nm (Figure 1). 

Approximately tenfold excess of zinc acetate was added to the solution of metal-

free cytochrome c6 and mixture was kept in a water bath at 40°C for ca. 30 minutes. 

Completion was checked by visible absorption spectra. As H2cytc6 was converted to 

Zncytc6, the bands of the former disappeared and those of latter, at 423, 549, and 585 nm, 

appeared, as illustrated in Figure 1. The resulting clear solution was then dyalized against 

water, to remove urea and excess zinc acetate, and then against desired buffer. The protein 

was purified on DEAE-cellulose column with a 20 mM sodium acetate buffer + 100 mM 

sodium chloride, pH 5.2 as the eluent. Usually only one band was evident. 

Absorptivities of zinc cytochrome c6, ÀS42I=(2.3±0.1)xl05 M"'cm"', was determined 

from absorption spectra and quantification of total protein using the BCA protein assay 

reagent kit. The triplet state was excited with the second harmonic (at 532 nm) of a Q-

switched Nd-YAG laser. Argon was passed first through water and then through the buffer 

solution. The required volume of buffer was deaerated in a 10-mm cuvette for at least 30 

minutes before zinc cytochrome c6 was added. Decay of the triplet state was monitored at 

460 nm, where the transient absorbance reaches the maximum. In the absence of a quencher, 
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the natural decay of the triplet excited state of the porphyrin to its ground state, lifetime, is 

monoexponential. The rate constant, knd, is 100+10 s"1 at room temperature in phosphate 

buffer having pH 7.00 and is independent of protein concentration in the interval from 1.0 to 

10 juM and of ionic strength in the interval from 2.5 to 700 mM. 

The Zncyt c6 was characterized with circular dichroism (CD) spectroscopy. CD in 

the far-UV range is the property of the protein backbone and is sensitive indicator of the 

protein conformation 17. We compared the spectra of cytochrome c6 containing iron(III), 

iron(II), and zinc(II) ions in the porphyrin. As the superimposed spectra in Figure 2 show, the 

three forms of cytochrome c6 have nearly identical conformations. This result shows that 

replacement of iron by zinc(II) does not cause any significant conformational change in 

cytochrome c6. 
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Figure 1. Time course of the reconstitution of the "free-base" cyt ce with zinc (II) ions. 

Absorption spectrum of H%cyt is shown as a blue line (t = 0) and absorption spectrum of 

Zncyt ce is shown as a green line (t = 30 min). 
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Figure 2. Circular dichroism spectra of the the ferricytochrome c6 (pink), ferrocytochrome c6 

(black), and zinc cytochrome (green). 
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